Wildfire Risk Mitigation for Electric Power Systems

Alyssa Kody

Assistant Professor Electrical and Computer Engineering Department North Carolina State University

> FREEDM Research Symposium April 2, 2024

On the Grid California Wildfires

Caused by Power Lines

Acres Burned

- = 0 4,500 acres = 4,500 - 20,000 acres = 20,000 - 97,000 acres = 153,336 acres = 963,309 acres
- —— = California Transmission System

Total Fires: 429

PCS: NAD 1983 California (Teale) Albers (Meters) GCS: NAD 1983 DATA SOURCE Department of Forestry and Fire Protection(CAL FIRE) Note: Data spans 1959 - 2021 SCALE: 15,796,789 Designed by Helen Asimina Tosteson

-		

FIRE NAME (CAUSE)	DATE	COUNTY	ACRES	STRUCTURES	DEATHS
1 CAMP (Powerlines)	November 2018	Butte	153,336	18,804	85
2 TUBBS (Electrical)	October 2017	Napa & Sonoma	36,807	5,636	22
³ TUNNEL - Oakland Hills (Rekindle)	October 1991	Alameda	1,600	2,900	25
4 CEDAR (Human Related)	October 2003	San Diego	273,246	2,820	15
5 NORTH COMPLEX (Lightning)	August, 2020	Butte, Plumas, & Yuba	318,935	2,352	15
6 VALLEY (Electrical)	September 2015	Lake, Napa & Sonoma	76,067	1,958	4
7 WITCH (Powerlines)	October 2007	San Diego	197,990	1,650	2
8 WOOLSEY (Electrical)	November 2018	Ventura	96,949	1,643	3
9 CARR (Human Related)	July 2018	Shasta County, Trinity	229,651	1,614	8
10 GLASS (Undetermined)	September 2020	Napa & Sonoma	67,484	1,520	0
LNU LIGHTNING COMPLEX 11 (Lightning/Arson)	August 2020	Napa, Solano, Sonoma, Yolo, Lake, & Colusa	363,220	1,491	6
12 CZU LIGHTNING COMPLEX (Lightning)	August 2020	Santa Cruz, San Mateo	86,509	1,490	1
13 NUNS (Powerline)	October 2017	Sonoma	44,573	1,355	3
14 DIXIE (Under Investigation)*	July 2021	Butte, Plumas, Lassen, & Tehama	963,309	1,311	1
15 THOMAS (Powerline)	December 2017	Ventura & Santa Barbara	281,893	1,063	2
16 CALDOR (Human Related)	September 2021	Alpine, Amador, & El Dorado	221,835	1,005	1
17 OLD (Human Related)	October 2003	San Bernardino	91,281	1,003	6
18 BUTTE (Powerlines)	September 2015	Amador & Calaveras	70,868	965	2
19 JONES (Undetermined)	October 1999	Shasta	26,200	954	1
20 AUGUST COMPLEX (Lightning)	August 2020	Mendocino, Humboldt, Trinity, Tehama, Glenn, Lake, & Colusa	1,032,648	935	1

Top 20 Most Destructive California Wildfires

California Department of Forestry and Fire Protection (CAL FIRE).

• 101 fatalities, \$5.5 billion in damages

• 101 fatalities, \$5.5 billion in damages

February 2024 Smokehouse Creek Fire

• 101 fatalities, \$5.5 billion in damages

February 2024 Smokehouse Creek Fire

• Largest wildfire in Texas history (1.2 mil. acres)

• 101 fatalities, \$5.5 billion in damages

Maui government files lawsuit, accuses Hawaiian electric company of causing Lahaina wildfires

By Samantha Delouya and Kelly McCleary, CNN © 5 minute read · Updated 9:24 AM EDT, Fri August 25, 2023

NOW PLAYING

Laba

"We had essentially a fire hurricane": The Governor of Hawaii on the inferno that has left hundreds still missing.

February 2024 Smokehouse Creek Fire

• Largest wildfire in Texas history (1.2 mil. acres)

3

• 101 fatalities, \$5.5 billion in damages

Maui government files lawsuit, accuses Hawaiian electric company of causing Lahaina wildfires

By Samantha Delouya and Kelly McCleary, CNN © 5 minute read · Updated 9:24 AM EDT, Fri August 25, 2023

NOW PLAYING

"We had essentially a fire hurricane": The Governor of Hawaii on the inferno that has left hundreds still missing.

February 2024 Smokehouse Creek Fire

• Largest wildfire in Texas history (1.2 mil. acres)

3

• 101 fatalities, \$5.5 billio

Maui government files lawsuit, accu electric company of causing Lahair

By Samantha Delouya and Kelly McCleary, CNN © 5 minute read · Updated 9:24 AM EDT, Fri August 25, 2023

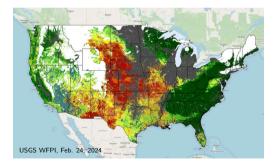
NOW PLAYING

"We had essentially a fire hurricane": The Governor of Hawa hundreds still missing.

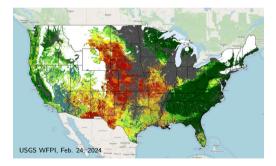
Utility-Caused Wildfires Are Becoming a National Problem

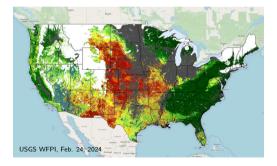
Climate change is raising the risk of blazes that are started by power lines and other utility equipment in many parts of the U.S. besides California.

🛱 Share full article 🏟 🗍

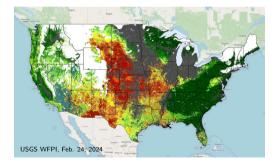

Workers replaced power lines that the Smokehouse Creek Fire damaged last month in

February 2024 Smokehouse Creek Fire


n Texas history (1.2 mil. acres)


• High winds, high temperatures, dry vegetation, low humidity

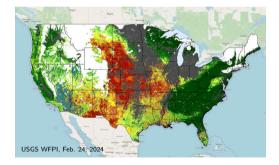
• High winds, high temperatures, dry vegetation, low humidity


• High winds, high temperatures, dry vegetation, low humidity

Spark from Power Infrastructure

Spark from Power Infrastructure

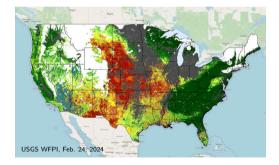
• High winds, high temperatures, dry vegetation, low humidity


*According to CAL FIRE

• Vegetation contact (2021 Dixie Fire*)

Spark from Power Infrastructure

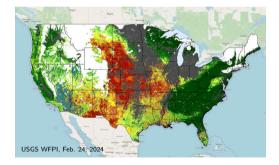
• High winds, high temperatures, dry vegetation, low humidity



- Vegetation contact (2021 Dixie Fire*)
- Arcing (2012 Utah Wood Hollow Fire †)

Spark from Power Infrastructure

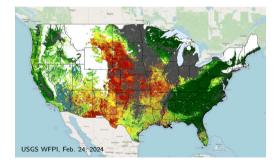
• High winds, high temperatures, dry vegetation, low humidity



- Vegetation contact (2021 Dixie Fire*)
- Arcing (2012 Utah Wood Hollow Fire †)
- Faulty equipment (2018 Camp Fire*)

Spark from Power Infrastructure

• High winds, high temperatures, dry vegetation, low humidity



- Vegetation contact (2021 Dixie Fire*)
- Arcing (2012 Utah Wood Hollow Fire †)
- Faulty equipment (2018 Camp Fire*)
- Sagging lines (2018 Cascade Fire*)

Spark from Power Infrastructure

• High winds, high temperatures, dry vegetation, low humidity

- Vegetation contact (2021 Dixie Fire*)
- Arcing (2012 Utah Wood Hollow Fire †)
- Faulty equipment (2018 Camp Fire*)
- Sagging lines (2018 Cascade Fire*)
- Conductor slap (2017 Thomas Fire*)

Category 1:

Immediate preventative action

Category 1:

Immediate preventative action

 Public Safety Power Shutoffs (PSPS) events

Category 1:

Immediate preventative action

Category 2:

Short-term modifications

 Public Safety Power Shutoffs (PSPS) events

Category 1:

Immediate preventative action

 Public Safety Power Shutoffs (PSPS) events Category 2:

Short-term modifications

- Increased vegetation maintenance
- Increased monitoring (e.g., sensors, cameras)
- Fast-trip settings

Category 1:

Immediate preventative action

• Public Safety Power Shutoffs (PSPS) events Category 2:

Short-term modifications

Category 3:

Long-term hardening and planning

- Increased vegetation maintenance
- Increased monitoring (e.g., sensors, cameras)
- Fast-trip settings

Category 1:

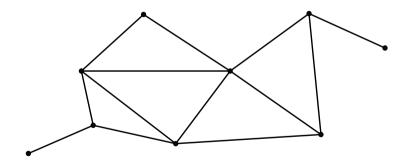
Immediate preventative action

• Public Safety Power Shutoffs (PSPS) events Category 2:

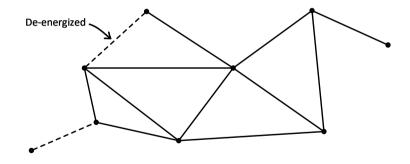
Short-term modifications

- Increased vegetation maintenance
- Increased monitoring (e.g., sensors, cameras)
- Fast-trip settings

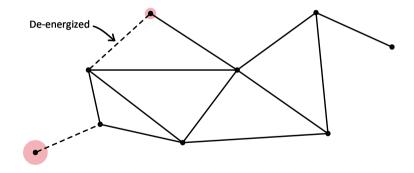
Category 3:

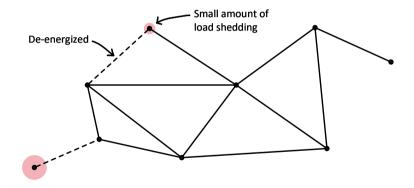

Long-term hardening and planning

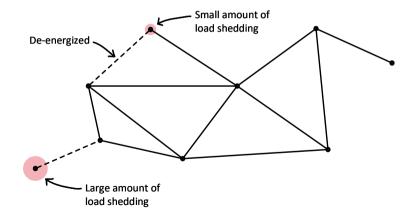
- Fire-resistant poles
- Undergrounding
- Covered conductors
- Distributed energy resources

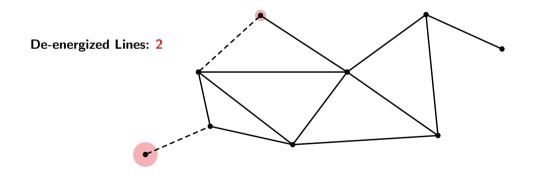

• Proactively de-energize power lines in high-wildfire-risk areas

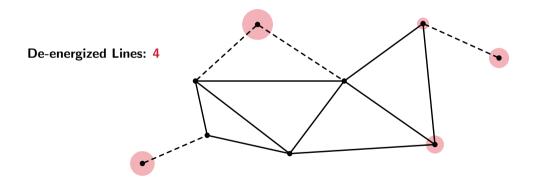
- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding


- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding

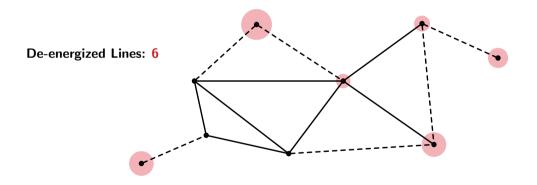

- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding


- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding

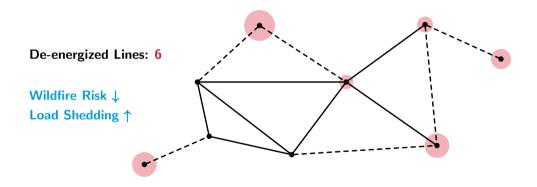

- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding


- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding

- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding



- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding


Public Safety Power Shutoff (PSPS)

- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding

Public Safety Power Shutoff (PSPS)

- Proactively de-energize power lines in high-wildfire-risk areas
- Tradeoff between wildfire risk and load shedding

• Negative health, safety, and economic impacts of power outages

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

"Even if the electricity decent arrive" she said "the bills do"

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

"**160,000** instances of power shutoffs to customers with **medical needs** from 2017 to 2021."

-Associated Press

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

Utility	Outage Start	Outage Duration	Circuit Name	Customers Impacted
PG&E	9/23/2019 17:08	0 days, 18 hrs, 3 min	BIG BEND 1101	185
PG&E	9/25/2019 3:06	0 days, 13 hrs, 14 min	BIG BEND 1101	185
PG&E	10/9/2019 0:45	2 days, 16 hrs, 56 min	BIG BEND 1101	190
PG&E	10/23/2019 14:31	1 days, 1 hrs, 44 min	BIG BEND 1101	190
PG&E	10/26/2019 17:00	4 days, 0 hrs, 56 min	BIG BEND 1101	189
PG&E	9/7/2020 15:34	3 days, 2 hrs, 27 min	BIG BEND 1101	234
PG&E	9/27/2020 4:05	1 days, 12 hrs, 57 min	BIG BEND 1101	237
PG&E	10/14/2020 18:20	1 days, 21 hrs, 58 min	BIG BEND 1101	237
PG&E	10/22/2020 5:08	1 days, 8 hrs, 24 min	BIG BEND 1101	239
PG&E	10/25/2020 14:58	1 days, 22 hrs, 57 min	BIG BEND 1101	239

California Public Utilities Commission (CPUC)*

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

Utility	Outage Start	Outage Duration	Circuit Name	Customers Impacted
PG&E	9/23/2019 17:08	0 days, 18 hrs, 3 min	BIG BEND 1101	185
PG&E	9/25/2019 3:06	0 days, 13 hrs, 14 min	BIG BEND 1101	185
PG&E	10/9/2019 0:45	2 days, 16 hrs, 56 min	BIG BEND 1101	190
PG&E	10/23/2019 14:31	1 days, 1 hrs, 44 min	BIG BEND 1101	190
PG&E	10/26/2019 17:00	4 days, 0 hrs, 56 min	BIG BEND 1101	189
PG&E	9/7/2020 15:34	3 days, 2 hrs, 27 min	BIG BEND 1101	234
PG&E	9/27/2020 4:05	1 days, 12 hrs, 57 min	BIG BEND 1101	237
PG&E	10/14/2020 18:20	1 days, 21 hrs, 58 min	BIG BEND 1101	237
PG&E	10/22/2020 5:08	1 days, 8 hrs, 24 min	BIG BEND 1101	239
PG&E	10/25/2020 14:58	1 days, 22 hrs, 57 min	BIG BEND 1101	239

California Public Utilities Commission (CPUC)*

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

Utility	Outage Start	Outage Duration	Circuit Name	Customers Impacted
PG&E	9/23/2019 17:08	0 days, 18 hrs, 3 min	BIG BEND 1101	185
PG&E	9/25/2019 3:06	0 days, 13 hrs, 14 min	BIG BEND 1101	185
PG&E	10/9/2019 0:45	2 days, 16 hrs, 56 min	BIG BEND 1101	190
PG&E	10/23/2019 14:31	1 days, 1 hrs, 44 min	BIG BEND 1101	190
PG&E	10/26/2019 17:00	4 days, 0 hrs, 56 min	BIG BEND 1101	189
PG&E	9/7/2020 15:34	3 days, 2 hrs, 27 min	BIG BEND 1101	234
PG&E	9/27/2020 4:05	1 days, 12 hrs, 57 min	BIG BEND 1101	237
PG&E	10/14/2020 18:20	1 days, 21 hrs, 58 min	BIG BEND 1101	237
PG&E	10/22/2020 5:08	1 days, 8 hrs, 24 min	BIG BEND 1101	239
PG&E	10/25/2020 14:58	1 days, 22 hrs, 57 min	BIG BEND 1101	239

September 2019

October 2019

California Public Utilities Commission (CPUC)*

- Negative health, safety, and economic impacts of power outages
- **Repeated** power outages can compound these repercussions

Utility	Outage Start	Outage Duration	Circuit Name	Customers Impacted
PG&E	9/23/2019 17:08	0 days, 18 hrs, 3 min	BIG BEND 1101	185
PG&E	9/25/2019 3:06	0 days, 13 hrs, 14 min	BIG BEND 1101	185
PG&E	10/9/2019 0:45	2 days, 16 hrs, 56 min	BIG BEND 1101	190
PG&E	10/23/2019 14:31	1 days, 1 hrs, 44 min	BIG BEND 1101	190
PG&E	10/26/2019 17:00	4 days, 0 hrs, 56 min	BIG BEND 1101	189
PG&E	9/7/2020 15:34	3 days, 2 hrs, 27 min	BIG BEND 1101	234
PG&E	9/27/2020 4:05	1 days, 12 hrs, 57 min	BIG BEND 1101	237
PG&E	10/14/2020 18:20	1 days, 21 hrs, 58 min	BIG BEND 1101	237
PG&E	10/22/2020 5:08	1 days, 8 hrs, 24 min	BIG BEND 1101	239
PG&E	10/25/2020 14:58	1 days, 22 hrs, 57 min	BIG BEND 1101	239

September 2020

October 2020

California Public Utilities Commission (CPUC)*

*PSPS Big Bend 1101 analysis initially completed by Mark Specht. https://blog.ucsusa.org/mark-specht

Hawaii utility faces scrutiny for not cutting power to reduce fire risks

Before the Maui wildfires, Hawaiian Electric did not have a plan – adopted widely in California and other states – to shut off power in certain lines in advance of dangerous winds

By Brianna Sacks

August 12, 2023 at 10:27 a.m. EDT

Hawaii utility faces scrutiny for not cutting power to reduce fire risks

Before th California

WILDFIRES

It's official: Power shutoffs underway across <mark>Oregon</mark> amid fire danger

August 12, 20

Additional power shutoffs are possible through the day

by: <u>Hailey Dunn</u> Posted: Sep 9, 2022 / 06:24 AM PDT Updated: Sep 9, 2022 / 09:37 PM PDT


PORTLAND, Ore. (KOIN) — With a **red flag warning** in effect across Oregon Friday, mass power shutoffs are happening across the state because of high winds and extreme fire conditions.

Fire danger is expected to rise by Friday afternoon. Gusty winds are forecasted to ramp up with speeds up to 30-40 mph in Portland and the Willamette Valley. KOIN 6's meteorologist Natasha Stenbock says high winds paired with Oregon's dry, warm weather bolsters fire danger.

Fire danger, red flag warning in effect across Oregon and Washington >

Hawaii utility faces scrutiny for not cutting power to reduce fire risks

Wildfire Ignition Prevention Schemes

Category 1:

Immediate preventative action

• Public Safety Power Shutoffs (PSPS) events Category 2:

Short-term modifications

- Increased vegetation maintenance
- Increased monitoring (e.g., sensors, cameras)
- Fast-trip settings

Category 3:

Long-term hardening and planning

- Fire-resistant poles
- Undergrounding
- Covered conductors
- Distributed energy resources

Wildfire Ignition Prevention Schemes

Category 1:

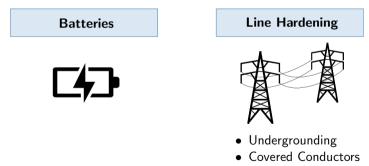
Immediate preventative action

• Public Safety Power Shutoffs (PSPS) events Category 2:

Short-term nodifications

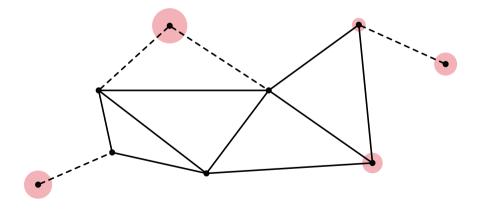
- Increased vegetation maintenance
- Increased monitoring (e.g., sensors, cameras)
- Fast-trip settings

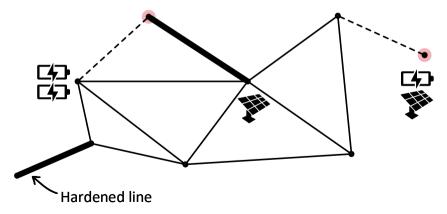
Category 3:


Long-term hardening and planning

- Fire-resistant poles
- Undergrounding
- Covered conductors
- Distributed energy resources

Optimally select, site, and size infrastructure investments to support system operations during PSPS events.


Batteries


Optimally select, site, and size infrastructure investments to support system operations during PSPS events.

• Vegetation Management

• Utilities often select lines to de-energize using risk thresholding methods

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: r^{ℓ}

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods

Balancing Wildfire Risk and Power Outages Through Optimized Power Shut-Offs

Noah Rhodes¹⁰, Graduate Student Member, IEEE, Lewis Ntaimo¹⁰, and Line Roald¹⁰, Member, IEEE

particularly in regions with high winds and low humidity. In real-time operations, electric utilities have few options for wildline rick mitigation loading to use of discuption measures such as reset integration, teaching to the or the optice inclusion state as public safety power shut-offs. Such power shut-offs have significant impacts on customers, who experience power cuts in an attempt to is exacerbated by the fact that power failures are more likely protect them from fires. This work proposes the optimal power to occur during windy conditions, when wildfires spread faster chut-off neohlern, an optimization model to support short-term operational decision making in the context of extreme wildlire risk. Specifically, the model optimizes grid operations to maximize the amount of power that can be delivered, while proactively minimiging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time-frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple risk thresholds. The proposed optimization-based model reduces heravon voorstation and conductors. Efforts to reduce probability hoth wildfire risk and lost load shed relative to the henchmarks.

Index Terms-Optimal power shut-offs, power system operation, PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiration

I INTRODUCTION

NUMBER of travic wildfires in recent years have high-

Abstract-Electric grid faults can ignite catastrophic wildfires. alone [3]. This and other fires ignited during the 2017 and 2018 California fire seasons lead the responsible utility Pacific Gas & Electricity (PG&E) to file for bankruptcy [4] and accept charges for involuntary manslaughter [5].

The risk of wildfire ignitions by power system infrastructure and are harder to contain. As a result, research on Australian bushfires and ignition sources in California has found that fires ignited by power lines tend to be larger and more damaging uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 junition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbine actions to reduce wildfine

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - De-energization variable: $z^{\ell} \in \{0, 1\}$

Balancing Wildfire Risk and Power Outages Through Optimized Power Shut-Offs

Noah Rhodes¹⁰, Graduate Student Member, IEEE, Lewis Ntaimo¹⁰, and Line Roald¹⁰, Member, IEEE

Abstract-Electric grid faults can ignite catastrophic wildfires. alone [3]. This and other fires ignited during the 2017 and 2018 particularly in regions with high winds and low humidity. In real-time operations, electric utilities have few options for wildline rick mitigation loading to use of discuption measures such as reset integration, teaching to the or the optice inclusion state as public safety power shut-offs. Such power shut-offs have significant impacts on customers, who experience power cuts in an attempt to is exacerbated by the fact that power failures are more likely protect them from fires. This work proposes the optimal power to occur during windy conditions, when wildfires spread faster chut-off neohlern, an optimization model to support short-term operational decision making in the context of extreme wildlire risk. Specifically, the model optimizes grid operations to maximize the amount of power that can be delivered, while proactively minimiging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time-frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple risk thresholds. The proposed optimization-based model reduces heravon voorstation and conductors. Efforts to reduce probability hoth wildfire risk and lost load shed relative to the henchmarks.

Index Terms-Optimal power shut-offs, power system operation, PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiration

I INTRODUCTION

NUMBER of travic wildfires in recent years have high-

California fire seasons lead the responsible utility Pacific Gas & Electricity (PG&E) to file for bankruptcy [4] and accept charges for involuntary manslaughter [5].

The risk of wildfire ignitions by power system infrastructure and are harder to contain. As a result, research on Australian bushfires and ignition sources in California has found that fires ignited by power lines tend to be larger and more damaging uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 junition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbine actions to reduce wildfine

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - De-energization variable: $z^{\ell} \in \{0,1\} \implies z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)

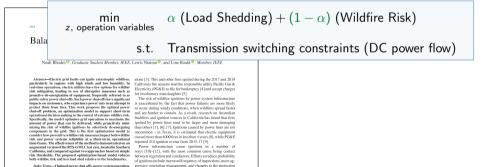
Balancing Wildfire Risk and Power Outages Through Optimized Power Shut-Offs

Noah Rhodes¹⁰, Graduate Student Member, IEEE, Lewis Ntaimo¹⁰, and Line Roald¹⁰, Member, IEEE

particularly in regions with high winds and low humidity. In real-time operations, electric utilities have few options for wildline rick mitigation loading to use of discuption measures such as reset integration, teaching to the or the optice inclusion state as public safety power shut-offs. Such power shut-offs have significant impacts on customers, who experience power cuts in an attempt to is exacerbated by the fact that power failures are more likely protect them from fires. This work proposes the optimal power to occur during windy conditions, when wildfires spread faster chut-off neohlern, an optimization model to support short-term operational decision making in the context of extreme wildlire risk. Specifically, the model optimizes grid operations to maximize the amount of power that can be delivered, while proactively minimiging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time-frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple risk thresholds. The proposed optimization-based model reduces heravon vooration and conductors. Efforts to reduce probability hoth wildfire risk and lost load shed relative to the henchmarks.

Index Terms-Optimal power shut-offs, power system operation, PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiration

I INTRODUCTION


NUMBER of travic wildfires in recent years have high-

Abstract-Electric grid faults can ignite catastrophic wildfires. alone [3]. This and other fires ignited during the 2017 and 2018 California fire seasons lead the responsible utility Pacific Gas & Electricity (PG&E) to file for bankruptcy [4] and accept charges for involuntary manslaughter [5].

The risk of wildfire ignitions by power system infrastructure and are harder to contain. As a result, research on Australian bushfires and ignition sources in California has found that fires ignited by power lines tend to be larger and more damaging uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 ignition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbine actions to reduce wildfine

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - ▶ De-energization variable: $z^{\ell} \in \{0,1\}$ \implies $z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)

systems to reduce the number of reclosing attempts or limit the

fault current [9], [12]-[14]. However, inspections, vegetation management, and equipment upgrades must be planned over a seasonal or worth time-scale. In day-to-day operations, utilities

are left with fencer and more disturbine actions to reduce wildfine

PSPS, public safety power shut-offs, risk management, wildfire risk mitigation.

I. INTRODUCTION

NUMBER of tragic wildfires in recent years have high-

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - ▶ De-energization variable: $z^{\ell} \in \{0,1\}$ \implies $z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)

amount of power that can be delivered, while proactively minimiging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple hoth wildfire risk and lost load shed relative to the henchmarks.

Index Terms-Ontintal nonzer shut-offs nonzer system operation PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiration

I INTRODUCTION

NUMBER of travic wildfires in recent years have high-

ignited by power lines tend to be larger and more damaging uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 junition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact risk thresholds. The proposed optimization-based model reduces heravon vooration and conductors. Efforts to reduce probability of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbine actions to reduce wildfine

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods

bushfires and ignition sources in California has found that fires

ignited by power lines tend to be larger and more damaging

uncommon - in Texas, it is estimated that electric equipment

caused more than 4000 fires in less than 4 years [8], while PG&F

ways [10]-[12], with the most common cause being contact

of ignitions include increased frequency of inspections, more an-

pressive synertation management, and changes to the protection

systems to reduce the number of reclosing attempts or limit the

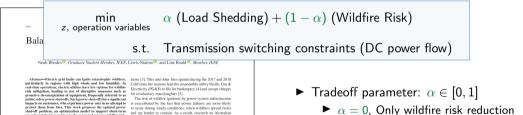
fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities

are left with fencer and more disturbine actions to reduce wildfine

Power infrastructure cause ignitions in a number of

reported 414 junition events from 2015-17 [9].

▶ De-energization variable: $z^{\ell} \in \{0,1\}$ \implies $z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)


chut-off neohlern, an optimization model to support short-term operational decision making in the context of extreme wildlire risk. Specifically, the model optimizes grid operations to maximize the amount of power that can be delivered, while proactively minimiging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple risk thresholds. The proposed optimization-based model reduces heravon vooration and conductors. Efforts to reduce probability hoth wildfire risk and lost load shed relative to the henchmarks.

Index Terms-Ontintal nonzer shut-offs nonzer system operation PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiration

I INTRODUCTION

▲ NUMBER of travic wildfires in recent years have high-

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - ▶ De-energization variable: $z^{\ell} \in \{0,1\}$ \implies $z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)

 $\blacktriangleright \alpha = 1$. Only load shedding reduction

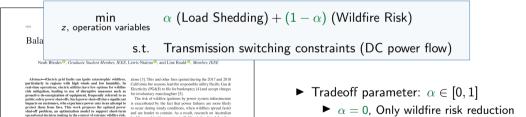
components in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple hoth uildfire risk and lost load shad relation to the henchmarky Index Terms-Ontintal nonzer shut-offs nonzer system operation PSPS multic sofety nower shut-offs, risk management, wildfire risk

operational decision making in the context of extreme wildlire risk.

Specifically, the model optimizes grid operations to maximize the

amount of power that can be delivered, while proactively mini-

mitiastion


I INTRODUCTION

▲ NUMBER of travic wildfires in recent years have high-

to occur during windy conditions, when wildfires spread faster and are harder to contain. As a result, research on Australian bushfires and ignition sources in California has found that fires ignited by power lines tend to be larger and more damaging miging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 junition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact risk thresholds. The proposed optimization-based model reduces heravon vooration and conductors. Efforts to reduce probability of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbine actions to reduce wildfine

- Utilities often select lines to de-energize using risk thresholding methods
 - Wildfire risk parameter: $r^{\ell} \implies$ De-energize line ℓ if $r^{\ell} > risk$ threshold
- Network-wide optimization outperforms thresholding methods
 - ▶ De-energization variable: $z^{\ell} \in \{0,1\}$ \implies $z^{\ell} = 1$ (Energized), $z^{\ell} = 0$ (De-energized)

 $\blacktriangleright \alpha = 1$. Only load shedding reduction

• Wildfire Risk =
$$\sum_{\ell \in \text{Lines}} (r^{\ell} z^{\ell})$$

Specifically, the model optimizes grid operations to maximize the amount of power that can be delivered, while proactively minicomponents in the grid. This is the first optimization model to consider how preventive wildfire risk measures impact both wildfire risk and power systems reliability at a short-term, operational time frame. The effectiveness of the method is demonstrated on an aurmented version of the RTS-GMLC test case, located in Southern California, and compared against two approaches based on simple hoth uildfire risk and lost load shad relation to the henchmarky

Index Terms-Ontintal nonzer shut-offs nonzer system operation PSPS multic sofety nower shut-offs, risk management, wildfire risk mitiastion

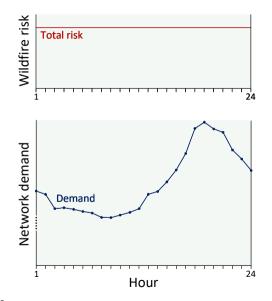
I INTRODUCTION

▲ NUMBER of travic wildfires in recent years have high-

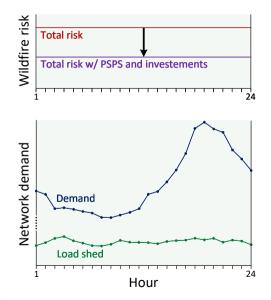
bushfires and ignition sources in California has found that fires ignited by power lines tend to be larger and more damaging miging the risk of wildfire ignitions by selectively de-energizing than others 111, 161, 171, Ionitions caused by power lines are not uncommon - in Texas, it is estimated that electric equipment caused more than 4000 fires in less than 4 years [8], while PG&F reported 414 junition events from 2015-17 [9].

Power infrastructure cause ignitions in a number of ways [10]-[12], with the most common cause being contact risk thresholds. The proposed optimization-based model reduces heravon vooration and conductors. Efforts to reduce probability of ignitions include increased frequency of inspections, more anpressive synertation management, and changes to the protection systems to reduce the number of reclosing attempts or limit the fault current [9], [12]-[14], However, inspections, vegetation management, and equipment unergeles must be planned over a seasonal or yearly time-scale. In day-to-day operations, utilities are left with fencer and more disturbing actions to reduce wildfine

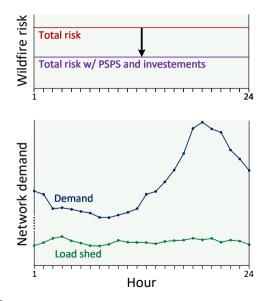
• Extend to multi-time period

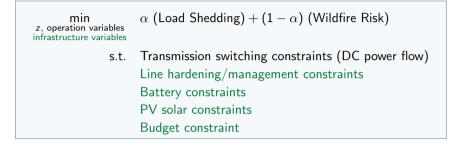

- Extend to multi-time period
- Incorporate infrastructure investment decisions

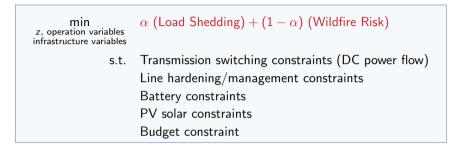
- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period

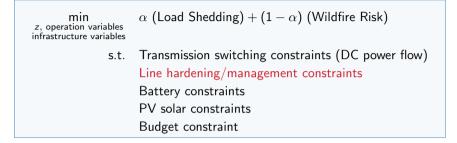

- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period
 - Consider day with peak demand

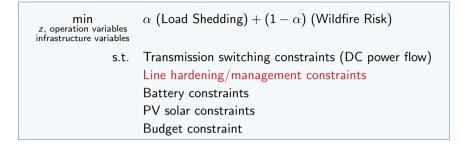
- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period
 - Consider day with peak demand
 - Assign risks to be average of top 10% of historical highest risks

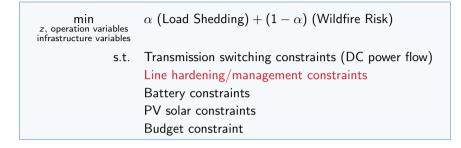

- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period
 - Consider day with peak demand
 - Assign risks to be average of top 10% of historical highest risks



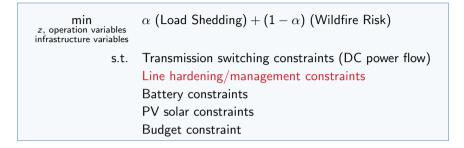

- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period
 - Consider day with peak demand
 - Assign risks to be average of top 10% of historical highest risks


- Extend to multi-time period
- Incorporate infrastructure investment decisions
- Place infrastructure based on worst-case representative 24-hour period
 - Consider day with peak demand
 - Assign risks to be average of top 10% of historical highest risks
- Test infrastructure decisions on sequential simulation of the 2021 wildfire season

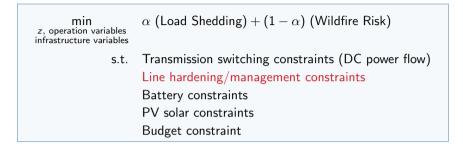




Objective function =
$$\alpha \left(\underbrace{\frac{\sum \sum load shed}{total demand}}_{Load Shedding} + (1 - \alpha) \left(\underbrace{\frac{\sum r^{\ell}(z^{\ell} - \beta y^{\ell})}{total risk}}_{Wildfire Risk} \right)$$

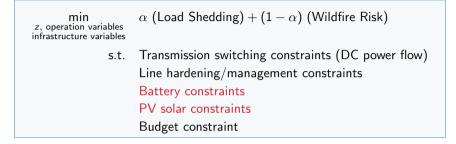


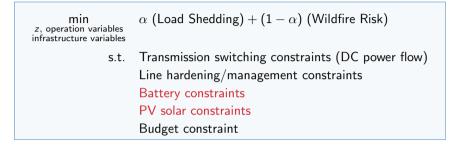
• Line hardening variable: $y^{\ell} \in \{0, 1\}$


- Line hardening variable: $y^{\ell} \in \{0, 1\}$
- Hardening risk reduction $\beta \in [0, 1]$

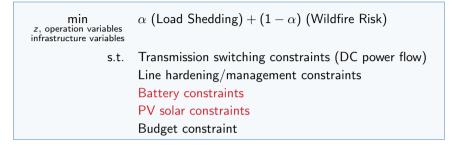
- Line hardening variable: $y^{\ell} \in \{0, 1\}$
- Hardening risk reduction $\beta \in [0, 1]$

Method	β	Reference	
undergrounding	1.0	CPUC	
covered conductors	0.5	CPUC, WECC	
vegetation management	0.25	PG&E, Palaiologou 2018	

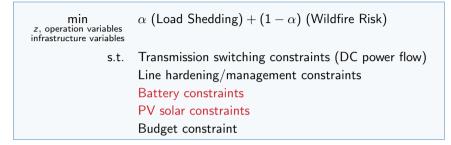

Palaiologou, et al. "Using transboundary wildfire exposure assessments to improve fire management programs: a case study in Greece." International Journal of Wildland Fire (2018).

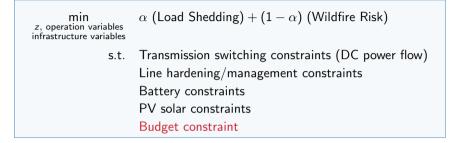


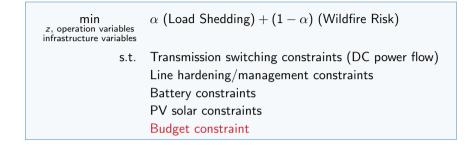
- Line hardening variable: $y^{\ell} \in \{0, 1\}$
- Hardening risk reduction $\beta \in [0, 1]$
- Harden/manage entire line


Method	β	Reference
undergrounding	1.0	CPUC
covered conductors	0.5	CPUC, WECC
vegetation management	0.25	PG&E, Palaiologou 2018

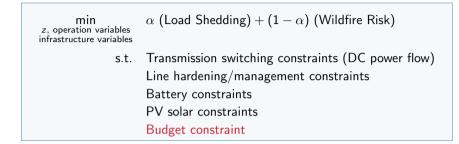
Taylor, Sofia, and Line A. Roald. "A framework for risk assessment and optimal line upgrade selection to mitigate wildfire risk." Electric Power Systems Research (2022).




• Standard mixed-integer linear battery model



- Standard mixed-integer linear battery model
 - Variables for battery placement, state, charge and discharge



- Standard mixed-integer linear battery model
 - Variables for battery placement, state, charge and discharge
- Solar output per location, hour and day using NREL's PVWatts calculator

 Consider range of budgets: \$100M to \$1B

 Consider range of budgets: \$100M to \$1B

Infrastructure	Cost	Reference
battery ¹	\$20 million per battery	NREL
solar PV ²	\$940 per 1-kW-DC array	NREL
undergrounding	\$3 million per mile	CPUC, PSC of WI
covered conductors	\$0.5 million per mile	CPUC, MISO
vegetation management ³	\$0.01 million per mile	LREC

¹ 100 MWh lithium-ion grid-scale battery.

² Fixed-tilt, utility-scale PV system.

³ Over a 20 year period.

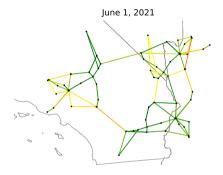
RTS-GMLC API

73 buses, 120 lines, 99 generators

WECC-240

240 buses, 448 lines, 143 generators

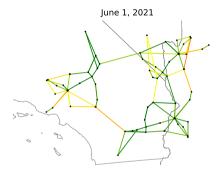
RTS-GMLC API



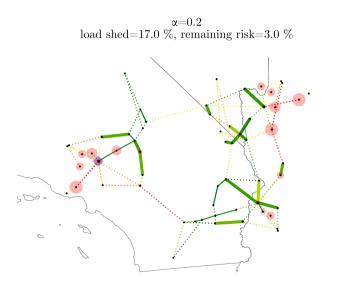
73 buses, 120 lines, 99 generators

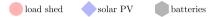
RTS-GMLC API

73 buses, 120 lines, 99 generators

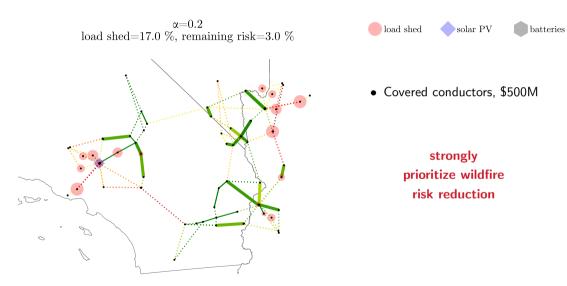


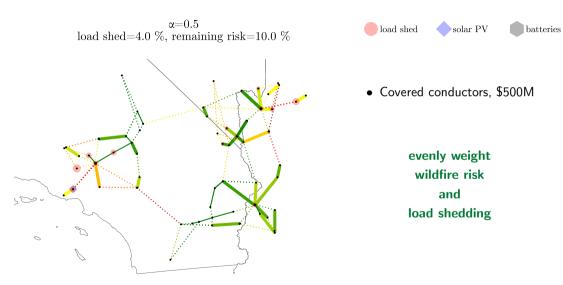
• Risks r^{ℓ} assigned using USGS Wind-enhanced Fire Potential Index

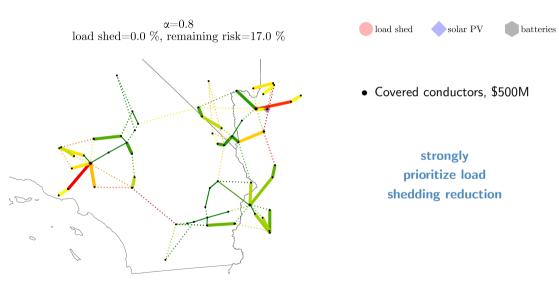

RTS-GMLC API

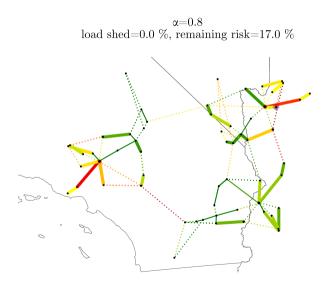


73 buses, 120 lines, 99 generators

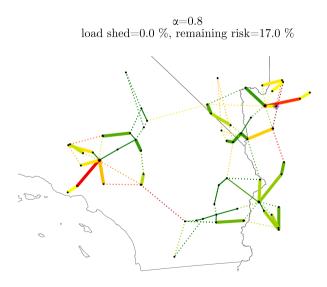


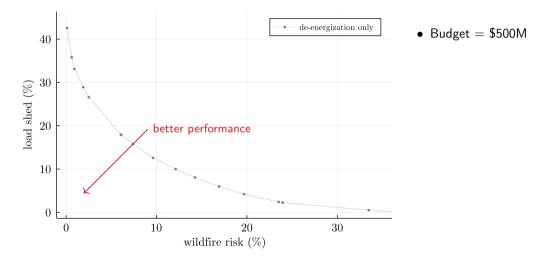

- Risks r^{ℓ} assigned using USGS Wind-enhanced Fire Potential Index
- Evaluate 3 cases:
 - 1. solar + batteries + enhanced vegetation management
 - 2. solar + batteries + covered conductors
 - $3. \ \text{solar} + \text{batteries} + \textbf{undergrounding}$

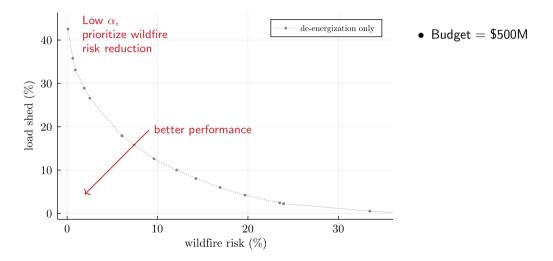


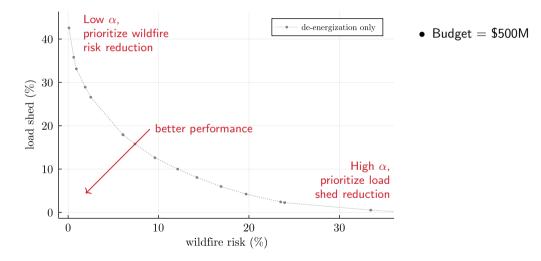


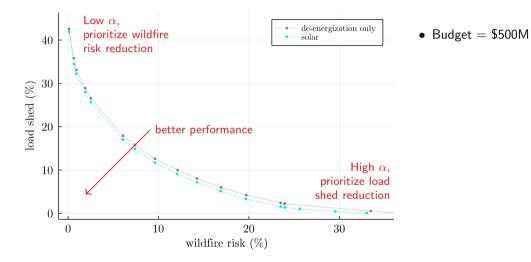
• Covered conductors, \$500M

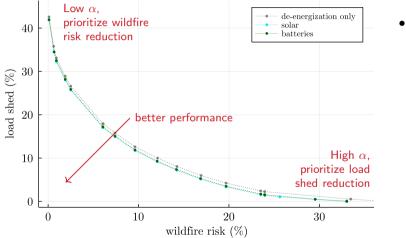


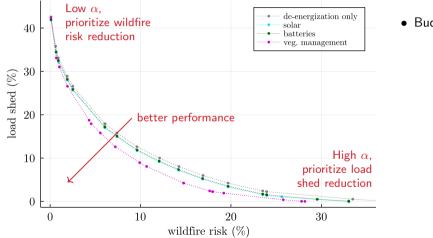


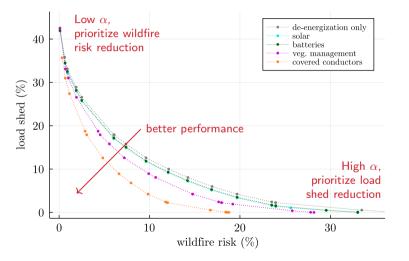

- Covered conductors, \$500M
- Many lines de-energized
 - Network extremely robust
 - ▶ 99 generators, 73 buses

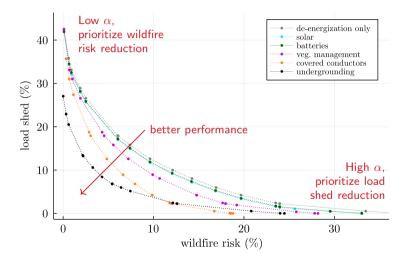


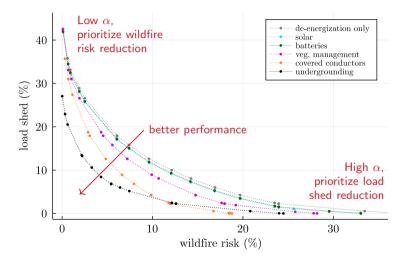


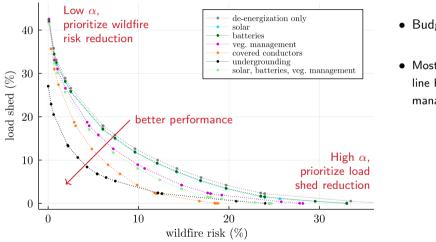

- Covered conductors, \$500M
- Many lines de-energized
 - Network extremely robust
 - ▶ 99 generators, 73 buses
- Selection, siting, and sizes change based on α

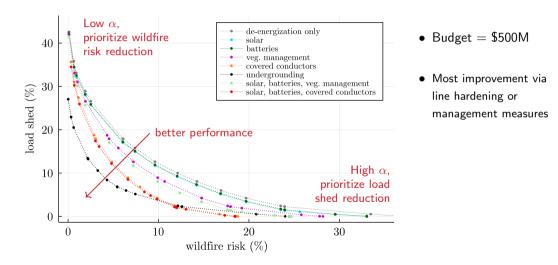


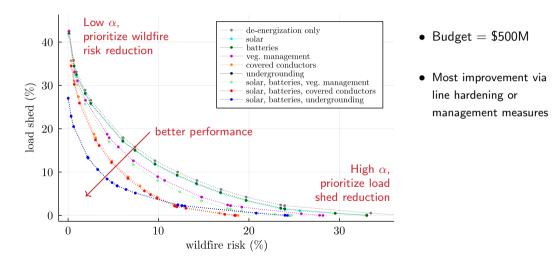


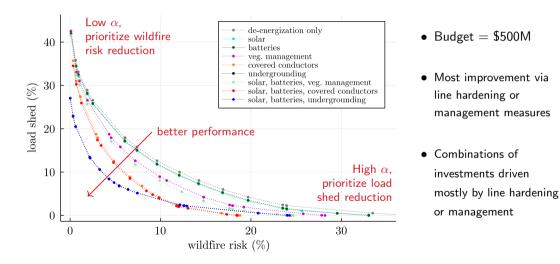

• Budget = \$500M

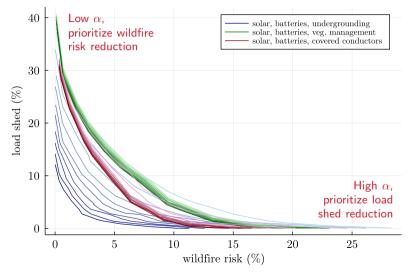

• Budget = \$500M

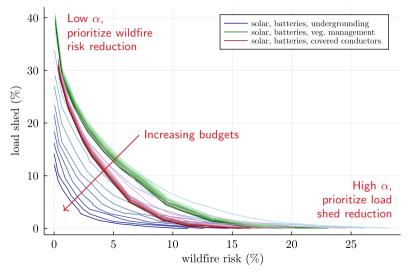

• Budget = \$500M

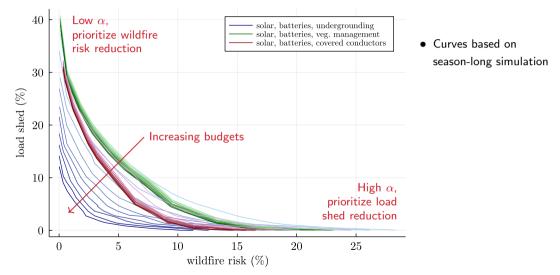

• Budget = \$500M

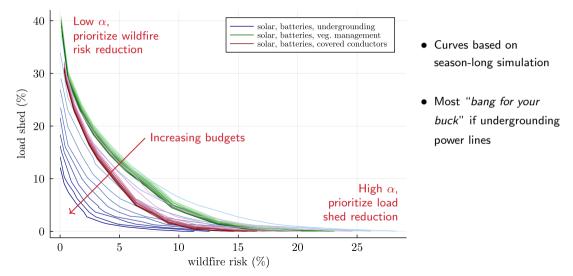


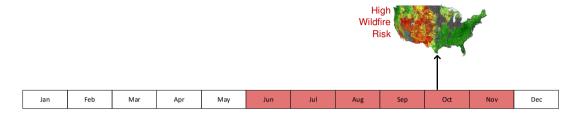

- Budget = \$500M
- Most improvement via line hardening or management measures

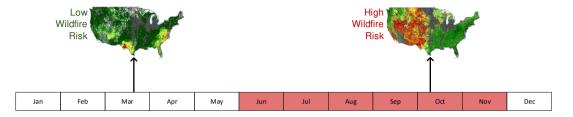


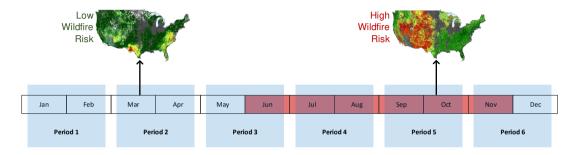

- Budget = \$500M
- Most improvement via line hardening or management measures

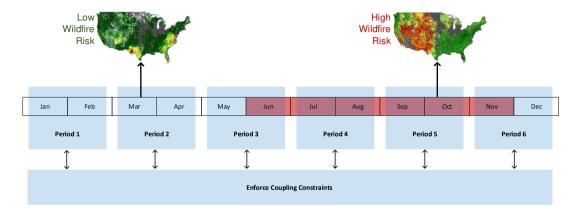


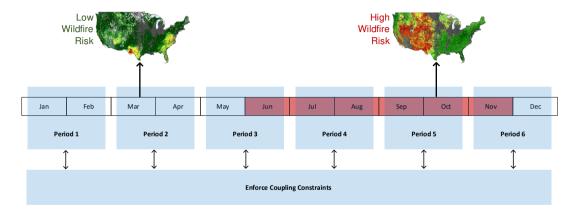


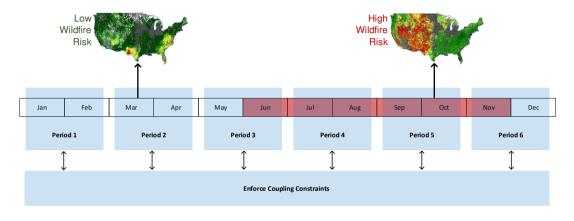


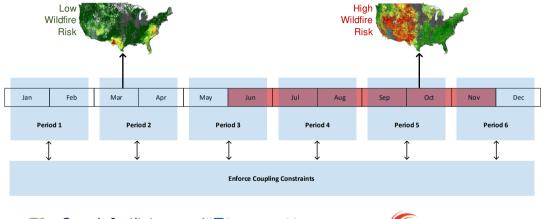




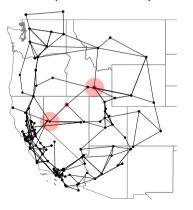

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec


Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

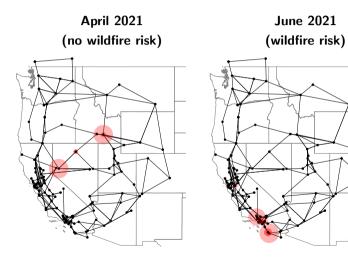




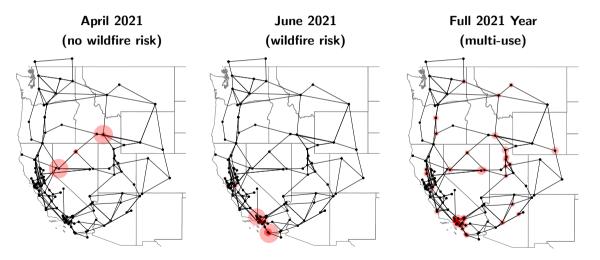
Lawrence Livermore National Laboratory



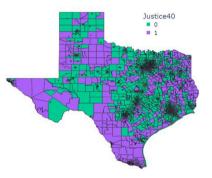
Lawrence Livermore



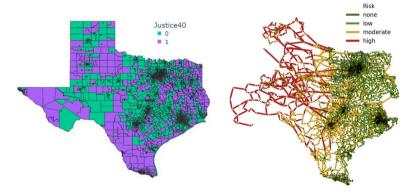
Battery Placements on WECC Network

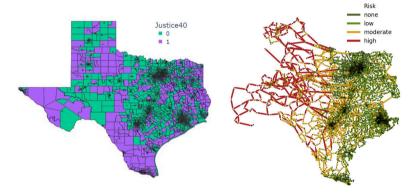

April 2021 (no wildfire risk)

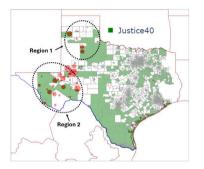
Battery Placements on WECC Network

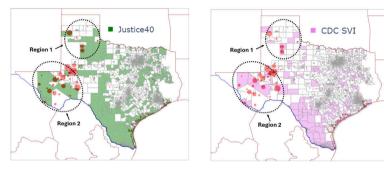


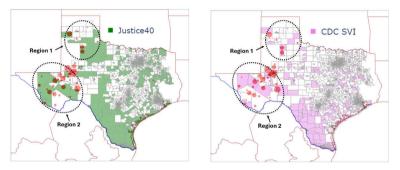
Battery Placements on WECC Network

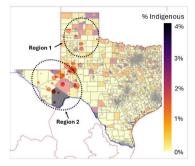


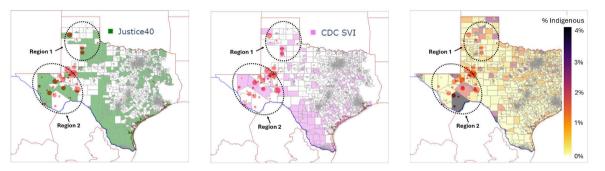


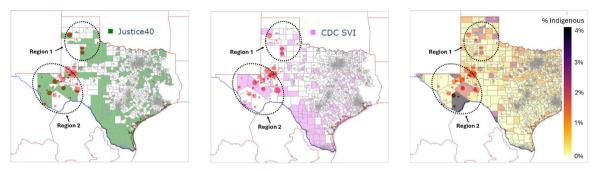






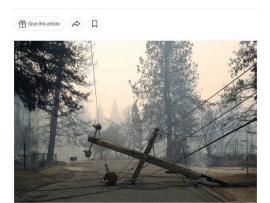






• Majority of load shedding due to PSPS events occur in circled regions

- Majority of load shedding due to PSPS events occur in circled regions
- Exploring how to capture the vulnerability of these areas, and how to select undergrounded power lines


Thank You

aakody@ncsu.edu

- Utility: PG&E undergrounding plan
 - ► 10,000 miles of power lines

PG&E Aims to Curb Wildfire Risk by Burying Many Power Lines

The California utility said the work would involve about 10,000 miles of its network, a project potentially costing tens of billions of dollars.

- Utility: PG&E undergrounding plan
 - ► 10,000 miles of power lines
- State: California Wildfire Investment
 - ► \$536 million for wildfire resilience

PG&E Aims to Curb Wildfire Risk by Burying Many Power Lines

The California utility said the work would involve about 10,000

Package Accelerating Projects to Protect High-Risk

Communities

Published: Apr 13, 2021

Governor and legislative leaders tour fuels management project that helped protect a Butte County community from last year's North Complex Fire

Early action funding invests in wildfire resilience projects including forest management, fuel breaks and hardening infrastructure in high-risk communities

Early budget action builds on the Governor's announcement last week of an expanded state task force to deliver on key commitments of the Wildfire and Forest Resilience Action Plan

OROULE EAST-Ahead of peak fire season, Governor Gavin Newsom today signed a 535 million wildfire package enabling the state to take urgent action on projects that support wildfire suppression, improve forest health and build resilience in communities to help protect residents and property from catastrophic wildfires in diverse landscapes across the state. The Governor signed 58 this alongside legislative leaders at a fuels management project in the Lake Crowille State Recreation Area that helped protects File.

The legislative package builds on Governor Newsom's early action funding for wildfire resilience proposed in his 2021-2022 state budget. It funds projects to restore the ecological health of forests and watersheds, fuel breaks around vulnerable communities, statewide fire prevention grants targeting projects to advance community hardening, and improvements to defensible space to mitgate wildfire damage. This early action plan is part of the Governor's overall proposed 51 billion

- Utility: PG&E undergrounding plan
 - ► 10,000 miles of power lines
- State: California Wildfire Investment
 - ► \$536 million for wildfire resilience
- Federal: Infrastructure Bill
 - \$5 billion harden against extreme weather events

PG&E Aims to Curb Wildfire Risk by Burying Many Power Lines

The California utility said the work would involve about 10,000

POLITICS

Biden signs the \$1 trillion bipartisan infrastructure bill into law

Updated November 15, 2021 - 7:15 PM ET @

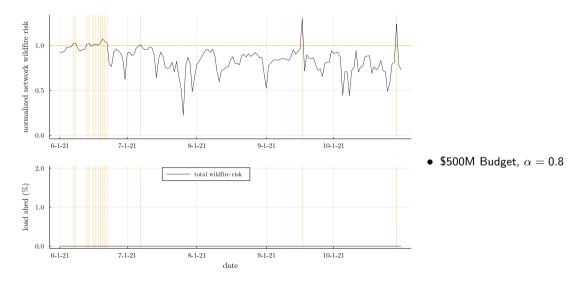
BRIAN NAYLOR

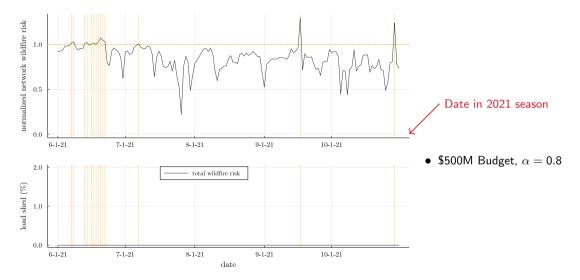
- Utility: PG&E undergrounding plan
 - ► 10,000 miles of power lines
- State: California Wildfire Investment
 - ► \$536 million for wildfire resilience
- Federal: Infrastructure Bill
 - \$5 billion harden against extreme weather events

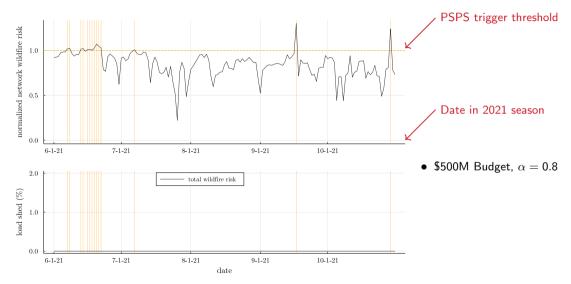
How should we invest in infrastructure to reduce wildfire ignition risk and load shedding?

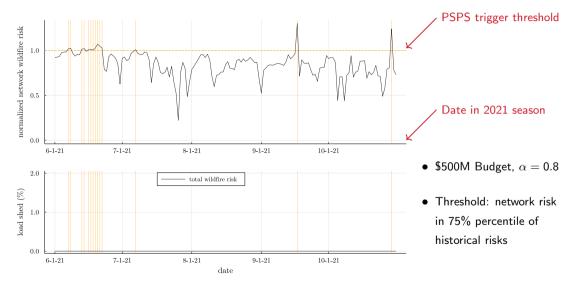
PG&E Aims to Curb Wildfire Risk by Burying Many Power Lines

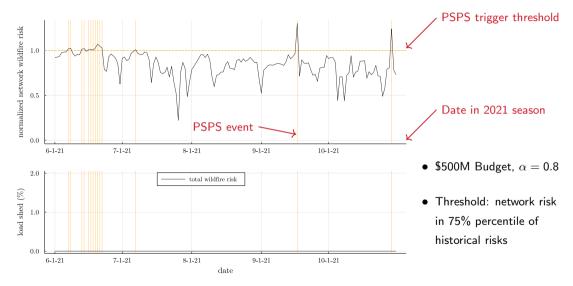
The California utility said the work would involve about 10,000


POLITICS

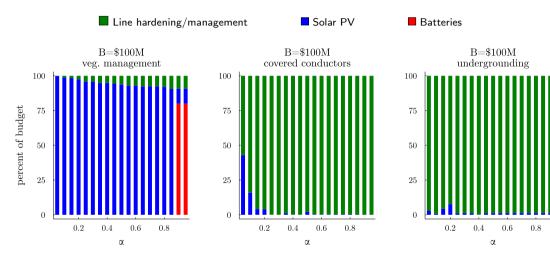

Biden signs the \$1 trillion bipartisan infrastructure bill into law

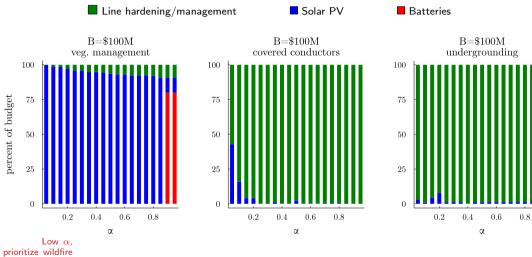

Updated November 15, 2021 - 7:15 PM ET @

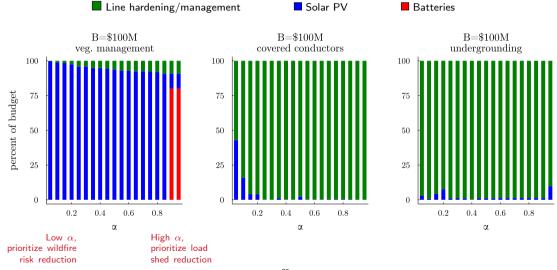

BRIAN NAYLOR

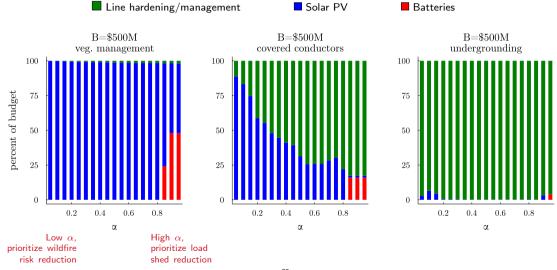


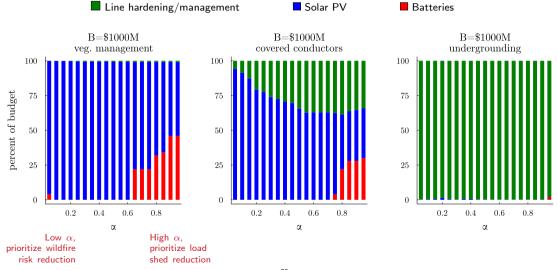


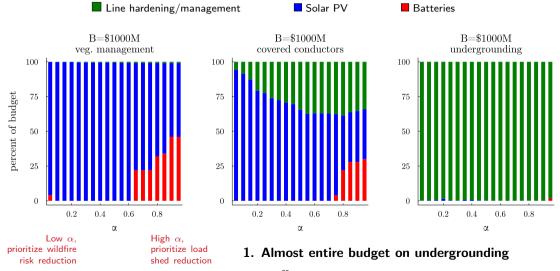


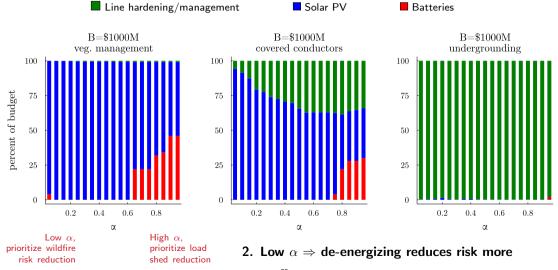











risk reduction

