FREEDICT SYSTEMS CENTER

Multiport Converter Development for Marine DC Microgrids Deployed in Coastal Communities

> **Principle Investigators** Dr. Iqbal Husain and Dr. Zeljko Pantic

Graduate Students Amiya Haque, Muhammad Abdelraziq, Al Raji Billah

FREE SYSTEMS CENTER

Research Team

Amiya Haque, PhD Graduate Student

Al Raji Billah, PhD Graduate Student

Muhammad Abdelraziq, PhD Graduate Student

Dr. Zeljko Pantic, Co-Pl

Dr. Iqbal Husain, PI

- ➤ Motivation.
- > The Potential of Ocean Wave Energy.
- > Point-Absorber Buoys | Wave Power.
- > Point-Absorber Buoys | HERO WEC Electrical.
- > Point-Absorber Buoys | HERO WEC Electrical System.
- > System Modeling and Controller.
- > Sample Results.
- > Output Marine DC Microgrid Integration.

FREE SYSTEMS CENTER

Motivation

- Coastal ecosystems produce tremendous amounts of services/products necessary for human well-being.
- Society's reliance on fossil fuels is not sustainable. ocean waves alone offer huge renewable energy.
- Research of harnessing energy from the "motion of the ocean" is in its infancy.

Proposed Solution

- Using Wave Energy Converters (WECs) to harness the ocean wave energy.
- Developing marine DC microgrids that use Multiport converters capable of interfacing with WECs.
- Ensuring modularity and scalability.

Impact

- A total energy potential of 2.64 TWh/yr along the U.S. continental shelf edge is available offering a higher energy density than solar and wind.
- Through DC microgrids, hydrokinetic resources can supply clean electricity to coastal communities.
- This includes onshore electric vehicles, offshore electric boats, and underwater loads.

The Potential of Ocean Wave Energy

> Waves off the coast of the U.S. could theoretically generate 2.64 TWh/year. (Source: US Energy Information Administration)

- > The wave energy's potential future contribution to the electricity mix is estimated to be **10%-20%**.
- > There are a variety of marine hydrokinetic resources and their wave energy generators (WECs), such as:

WECs designed for tidal and stream motions in seas or oceans' depths. Source: TTTGLOBAL.

Offshore WEC Source: OSCILLApower, Inc, nrel.gov.

Onshore WEC Source: Eco Wave Power.

Point-Absorber Buoys | Wave Power

The power that can be extracted from a wave is:

- *H* is the height of the wave.
- *L* is the wavelength.
- *T* is the average period of the wave.

Illustrative drawing of two consecutive ocean waves.

The National Data Buoy Center's source of meteorological and oceanographic measurements for the marine environment.. Source: https://www.ndbc.noaa.gov/.

- Based on observed wave patterns, one could estimate how much is available for extraction in a given period of time.
- The power electronic unit needs to be able to process such power.

Point-Absorber Buoys | HERO WEC Electrical Output

TEMS

The HERO WEC, NREL's first wave-powered desalination system, rides the waves off Jennette's Pier in Nags Head, North Carolina, enabling researchers to gather real-world data that advance critical research on small-scale WECs. Source: nrel.gov.

A key part of the HERO WEC's electrical system is the onshore power electronics enclosure—a box of components that regulates the voltage coming in from the waves.

- Wave energy is extremely scattered causing the voltage of that power to be never constant.
- The power electronic unit needs to be able to process variable-frequency variable-amplitude voltage.

Point-Absorber Buoys | MPC Electrical System

EMS

CENTER

A key part of the HERO WEC's electrical system is the onshore power electronics enclosure—a box of components that regulates the voltage coming in from the waves.

- The WEC port is programmed to work with a variablefrequency and voltage.
- The WEC interfacing port taps directly to the DC bus of the marine DC microgrid.
- This allows the WEC energy to be used directly in supplying loads or stored in batteries.

Point-Absorber Buoys | HERO WEC System Modeling

To aid with the design and prototyping of WEC-compatible MPCs and control algorithms, WEC models are necessary.

STEMS CENTER

- > This helps save costs since WEC deployment is costly.
- Programmable power supplies are limited in terms of the lowest frequency they can output.

Programmable three-phase AC power supply with a sample emulated-WEC voltage output.

Source: California Instruments.

FREEDAT SYSTEMS CENTER

MPC | WEC Port Control

- > Given the WEC acts as a voltage source, the power extraction is controlled by the current.
- > The current determines the power extracted which can be less that what is available by the WEC device.
- The controller must be adaptive in the sense that it requests power only when voltage is available, otherwise, instabilities occur.
- > MPPT implementation requires extensive learning and knowledge of the WEC devices and wave nature.

Used control structure of the WEC-interfacing port with the option to implement an MPPT algorithm for maximum power capturing.

FREE SYSTEMS CENTER

MPC | Controller Performance Example

- > Given the oscillatory nature of wave energy, the controller needs to adaptively request power once voltage is available.
- > A current proportional to the voltage can be requested during each cycle.
- > A varying proportionality constant leads to an MPPT algorithm.

 $Factor = \frac{Rated \ Power \ of \ WEC}{Maximum \ Voltage \ of \ the \ WEC^2}$

Envisioned HERO WEC Integration in a DC Microgrid

REE

SYSTEMS CENTER

F

Thank you!

- University of North Carolina Coastal Studies Institute
 - North Carolina Renewable Ocean Energy Program
- Atlantic Marine Energy Center (AMEC) for hardware components
- FREEDM Center Support for graduate students and testing facility