Power Conversion Systems enabled by SiC-based Monolithic Bidirectional FET (BiDFET)

Subhashish Bhattacharya

Prof. Jay Baliga - SiC BiDFET device
Prof. Doug Hopkins - Advanced packaging of SiC BiDFET device

FREEDM Annual Meeting 2024 Presentation

$$
\text { April 2, } 2024
$$

Four Quadrant Switch (FQS): The Ideal Power Device (The Holy Grail)

Ideal Device Characteristics:

- Large Forward \& Reverse Blocking Capability
- Bi-directional current flow
- Zero On-State Voltage Drop
- Fast Switching Capability
- Gate Voltage Controlled Output Characteristics
- Excellent Safe-Operating-Area

ASD needs Energy Storage Element:

- DC link capacitor as energy storage element
- Bulky
- Expensive
- Poor Reliability
- Degraded performance under high temperature
- Single point failure
B. J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd Edition, Springer-Science, 2019

Four Quadrant Switch (FQS) Enabled Direct AC-AC Matrix or Cyclo Converter

Fig. 1: Conventional CSI topology (H6-CSI) using reverse-voltageblocking (RB) switches with regulated front-end dc-link current

CSI with Bi-Directional [RB] Switches

Fig. 1. Simplified circuit of a 3×3 matrix converter,
Output AC power

- Direct AC-AC Matrix or Cyclo Converter creates a variable output voltage with unrestricted frequency using an array of fully controlled four-quadrant bidirectional switches
- Does not need large energy storage element and DC-Link
- "Unfortunately, there were no such devices available" and "Consequently, multiple discrete devices had to be used to construct suitable switch cell" [P.W. Wheeler, et al, "Matrix Converters: A Technology Review", IEEE Trans. Industrial Electronics, vol. 49, no. 2, pp. 276-288, April 2002.]
- CSI have traditionally used Thyristor family reverse voltage blocking (RB) switches [eg. Thyristors, SGTO Thyristors, Symmetric IGCTs] - however, Thyristor family RB switches typically have low switching frequency
- WBG based SiC MOSFET with series connected SiC JBS [Junction Barrier Schottky] diode provides a RB switch with increased switching frequency for CSI - however, will have higher conduction voltage drop compared to single MOSFETs or IGBTs
- SiC BiDFET as a monolithic devices offers advantage of lower conduction voltage drop and higher switching frequency for CSI and Direct AC-AC Matrix or Cyclo Converter based power conversion systems

Monolithic SiC-based Bidirectional FET (BiDFET) Switch: 1200V, 20A DIE

Gen-1 SiC BiDFET: Chip Design

5500
5500

SiC BiDFET Gen-1: Single Chip

Custom-designed 4-terminal package for the BiDFET

$>$ Blocking Voltage > 1400 V
$>$ On-Resistance $=50 \mathrm{~m} \Omega$
$>$ First Pass Success
> Used to demonstrate $1 \phi 2.3 \mathrm{~kW}$ converter
$>\mathrm{C}_{\text {iss }}=11,000 \mathrm{pF}$
$\Rightarrow C_{\text {oss }}=500 \mathrm{pF}$ at 1000 V
$\Rightarrow C_{\text {rss }}=50 \mathrm{pF}$ at 1000 V

SiC BiDFET Gen-1: Parallel Chips

Objective: Demonstrate Reduced On-Resistance BiDFET by Paralleling Two Chips for 3ϕ Converter Application

$>$ Turn-on and Turn-off like a single Gen-1 BiDFET chip
> Switching Losses (800 V, 20 A):
$\rightarrow E_{\text {ON }}=1350 \mu \mathrm{~J}$
$\Rightarrow E_{\text {OFF }}=460 \mu \mathrm{~J}$
$\Rightarrow E_{\text {TOTAL }}=1810 \mu \mathrm{~J}$

Gen-2 BiDFET: Achieve 2x Lower $\mathrm{R}_{\text {on }}$

Objective:
> Rated Blocking Voltage = 1.2 kV
> Breakdown Voltage > 1.4 kV
$>$ Device On-Resistance $=25 \mathrm{~m} \Omega$
Conventional Doubling Die Size Approach:
> Very Low Yield
> Die Size exceeds X-Fab Maximum Reticle Size

- Impossible

Parallel Gen-1 Dies:
> Achieved in Modules
New Design and Process Strategy Created:
> Separate JBS Diode from MOSFET Cells
> Reduces Cell Pitch to $2.8 \mu \mathrm{~m}$ from $6.1 \mu \mathrm{~m}$
$>$ Reduces Specific On-Resistance to $5.3 \mathrm{~m} \Omega-\mathrm{cm}^{2}$
> Ascribe 10 \% Active Area to JBS Diode
$\Rightarrow R_{\text {on }}=26 \mathrm{~m} \Omega$ achievable
Additional Objective:
> Add Integrated Temperature Sensor
> Use Poly-Silicon Gate Electrode Resistance
$>$ No additional processing required

SiC BiDFET Gen-2 Single Chip

Objective: Demonstrate Reduced On-Resistance BiDFET with Single Chip for 3ϕ Converter Application

> Turn-on and Turn-off like a single Gen-1 BiDFET chip
> Switching Losses (800 V, 20 A):
$>E_{O N}=1120 \mu \mathrm{~J}$
$>E_{\text {OFF }}=250 \mu \mathrm{~J}$
$>\mathrm{E}_{\text {TOTAL }}=1370 \mu \mathrm{~J}$
Single Gen-2 BiDFET chip can handle $20 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{ON}}=0.5 \mathrm{~V}\right)$.

SiC BiDFET Single Gen-2 Chip vs BP-1 Two Gen-1 Chips in Parallel

Objective: Demonstrate Reduced On-Resistance BiDFET with Single Chip for 3ϕ Converter Application

Parameter, Units	$\begin{aligned} & \text { Gen } 1 \\ & \text { (2 Chips) } \end{aligned}$	$\begin{gathered} \text { Gen } 2 \\ \text { (1 Chip) } \end{gathered}$	Improvement
Chip Area, cm^{2}	2.28	1.14	2x
$\mathrm{R}_{\mathrm{DS}, \mathrm{ON}}, \mathrm{m} \Omega$	25	27	-
$\mathrm{g}_{\mathrm{M}}, \mathrm{S}$	15	15	-
$\mathrm{C}_{\text {ISS }}, \mathrm{pF}$	15100	11730	1.3 x
$\mathrm{C}_{\text {OSS }}, \mathrm{pF}$	1050	600	1.75x
$\mathrm{C}_{\text {RSS }}, \mathrm{pF}$	70	70	-
$\mathrm{E}_{\text {ON }}, \mu \mathrm{J}$	1350	1120	1.2x
$\mathbf{E}_{\text {OFF }}, \boldsymbol{\mu} \mathrm{J}$	460	250	1.8x
$\mathbf{E}_{\text {TOTAL }}, \mu \mathrm{J}$	1810	1370	1.3x

BiDFET characterization

DPT results of BiDFET module with two Gen-1 dies in parallel at 800V, 100A.

$$
\begin{aligned}
& \text { Channel 1: Gate-source voltage (20 V/div) } \\
& \text { Channel 2: DUT current (50 A/div) } \\
& \text { Channel 3: Inductor current (} 50 \mathrm{~A} / \mathrm{div} \text {) } \\
& \text { Channel 6: DUT voltage (} 500 \mathrm{~V} / \mathrm{div} \text {) } \\
& \text { Channel 7: DC bus voltage (} 500 \mathrm{~V} / \text { div) } \\
& \hline
\end{aligned}
$$

Turn-OFF transition

Turn-ON transition

BiDFET characterization

DPT results of BiDFET module with Gen-2 dies at 800V, 20 A.


```
Channel 1: Gate-source voltage (10 V/div)
Channel 2: DUT current (20 A/div)
Channel 3: Inductor current (20 A/div)
Channel 5: Freewheeling device voltage (500 V/div)
Channel 6: DUT voltage (500 V/div)
Channel 7: DC bus voltage (500 V/div)
```


Turn-ON transition

BiDFET characterization

PowerAmerica operation.

$2.3 \mathrm{~kW}, 1-\mathrm{ph}$ grid connected converter prototype enabled by 1200V, 20A SiC BiDFET

High frequency transformer voltages/current and grid side current at $\mathbf{1 0 0 \%}$ load at $\mathbf{2 7 7}$ V AC voltage.

- Full load operation at 400 V input, 277 V RMS AC output at 2.3 kW power.
- Total harmonic distortion in grid-side current: 4.7%

Hardware prototype of the AC/DC DAB converter for • Power factor: 0.9998

$2.1 \mathrm{~kW}, 1$-ph grid connected converter prototype enabled by 1200V, 20A SiC BiDFET

High frequency transformer voltages/current and grid side current at $\mathbf{1 0 0 \%}$ load at 240 V AC voltage.

- Full load operation at 400 V input, 240 V RMS output at 2.1 kW
- Total harmonic distortion in grid-side current: 4.8%
- Power factor: 0.9998

Hardware prototype of the AC/DC DAB converter

2.1 kW , 1-ph grid connected converter prototype enabled by 1200V, 20A SiC BiDFET

Hardware prototype of the AC/DC DAB converter

Power factor and current total harmonic distortion at 100\% load at 240 V AC voltage.

- Measurement using Hioki Power Analyzer PW6001.
- Current sensors: $50 \mathrm{~A}, 2 \mathrm{MHz}$.
- Voltage potentiometers: 1000 V .

$2.1 \mathrm{~kW}, 1-\mathrm{ph}$ grid connected converter prototype enabled by 1200V, 20A SiC BiDFET

Hardware prototype of the AC/DC DAB converter

Overall efficiency, semiconductor efficiency and estimated loss distribution at different rates of PV generation.

- Semiconductor efficiency indicates losses in the semiconductors estimated after segregating the transformer, inductor and filter losses.
- Efficiency can be improved by improving transformer design and reducing switching frequency for reduced turn-off losses.

SiC Bi-Directional FET (BiDFET) packaging: 1200V, 50A half-bridge module

Half-bridge module schematic.

Half-bridge module packaging layout.

Fabricated half-bridge module.

Half-bridge module thermal simulation
(h_coeff $=750 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$).

- The designed Half-Bridge Module contains two BiDFETs in Parallel per switch to enhance current and power handling capability.
- The package is designed symmetrically to allow for easy installation in the converter.

SiC Bi-Directional FET (BiDFET) packaging: 1200V, 50A half-bridge module

Half-bridge module experimental thermal characterization testbench.

1 (A)	VI (V)	V2 (V)	Ron_1 (mQ)	Ron_2 (m)	Pl (W)	P2 (M)	P_total (W)	$\begin{gathered} \mathrm{Tc} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Tj_1 } \\ & \left({ }^{(} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { TJ_2 } \\ & \text { (}{ }^{(C)} \text { C) } \end{aligned}$
22	0.49	0.49	22.2	22.3	10.8	10.8	21.6	31.5	37.9	39.2
27	0.61	0.61	22.5	22.7	16.4	16.5	32.9	35.5	42.1	44.3
30	0.69	0.69	22.8	23.1	20.6	20.8	41.3	39	46.7	50.0
33	0.77	0.78	23.1	23.5	25.4	25.7	51.1	43	51.1	55.7
36	0.85	0.86	23.5	23.9	30.5	31.0	61.5	48	56.5	62.2
39	0.93	0.95	23.9	24.4	36.2	37.0	73.1	52.5	61.7	68.6
42	1.03	1.06	24.6	25.3	43.2	44.5	87.7	60	71.3	80.4
45	1.15	1.19	25.6	26.4	51.8	53.6	105.3	68	83.0	93.7
48	1.27	1.32	26.5	27.6	60.8	63.2	124.1	75	94.5	106.2
50	1.38	1.45	27.6	29.0	68.6	72.1	140.7	82	106.2	120.7

Experimental thermal characterization testdata.

Gen-2 BiDFET: Chip Design

Gen-2 BiDFET: Temperature Sensor

New feature created in Gen-2 BiDFET:

On-Chip Temperature Sensing Capability
> Makes use of Silicided Polysilicon Gate Electrode Layer
> No additional processing steps required
> Silicided Polysilicon Sheet Resistance: $3 \Omega /$ square
> 100Ω Poly-Si resistor integrated on-chip to allow BiDFET device temperature monitoring

Temperature Sense Resistor: Uniformity

Sense Resistor Room Temperature Data

Wafer Position	\mathbf{R}
Bottom	90Ω
Right	91Ω
Middle	87Ω
Top	92Ω

> Measured Temperature Sense Resistance @ RT = 90Ω
$>$ Matches design value of $\sim 100 \Omega$
> Achieved project goal

Test Conditions: $\mathrm{V}_{\mathrm{DC}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{T}_{2} \mathrm{~T}_{1}}=8-20 \mathrm{~A}$, Case Temperatures: $25^{\circ} \mathrm{C}$, Gate resistances $=10 \Omega$ LS Switch: $1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 / 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}_{2} \mathrm{~T}_{2}}=20 \mathrm{~V}\right)$, HS Switch: $1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=20 \mathrm{~V}\right)$

The 1.2 kV BiDFET Switch: Switching Performance

Test Conditions: $\mathrm{V}_{\mathrm{DC}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{T}_{2} \mathrm{~T}_{1}}=10 \mathrm{~A}$, Case Temperatures: $25^{\circ} \mathrm{C}$, Gate resistances $=2-20 \Omega$

$$
\text { LS Switch: } 1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{~V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 / 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}_{2} \mathrm{~T}_{2}}=20 \mathrm{~V}\right) \text {, HS Switch: } 1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{~V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 \mathrm{~V}^{2} \mathrm{~V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=20 \mathrm{~V}\right)
$$

The 1.2 kV BiDFET Switch: Switching Performance - Loss vs Case Temperature
Test Conditions: $\mathrm{V}_{\mathrm{DC}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{T}_{2} \mathrm{~T}_{1}}=10 \mathrm{~A}$, Case Temperatures: $25-140^{\circ} \mathrm{C}$, Gate resistances $=10 \Omega$ LS Switch: $1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 / 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}_{2} \mathrm{~T}_{2}}=20 \mathrm{~V}\right)$, HS Switch: $1.2 \mathrm{kV} \operatorname{BiDFET}\left(\mathrm{V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}_{1} \mathrm{~T}_{1}}=20 \mathrm{~V}\right)$

With Low-side BiDFET G $\mathbf{1 1}$ Off

Reduced output capacitance of the high-side switch results in reduction of switching loss with case temperature.

The BiDFET switching losses decrease by 17% as case temperature increases from $25{ }^{\circ} \mathrm{C}$ to $140{ }^{\circ} \mathrm{C}$.
Peak currents at turn-on exhibit small reduction with increasing case temperature.

The 1.2 kV BiDFET Switch: Static Characterization

BiDFET blocking characteristics:

BiDFET output characteristics:

- Conduction through series JBS diode.
- Knee Voltage =1.2 V.

BiDFET transfer characteristics:

- Conduction through JBSFET-1 channel for both cases.
- $\mathrm{V}_{\mathrm{th}} @ \mathrm{~V}_{\mathrm{T} 2-\mathrm{T}=}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{T} 2-\mathrm{T} 1}=10 \mathrm{~mA}$ was 1.35 V .
- $G_{m} @ V_{T 2-T 1}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{T} 2-T 1}=20 \mathrm{~A}$ was 17 S .

- Conduction through JBSFET-1 \& JBSFET-2 channels for $\mathrm{V}_{\mathrm{G} 2-\mathrm{T} 2}=20 \mathrm{~V}$ case.
- No conduction for $\mathrm{V}_{\mathrm{G} 2-\mathrm{T} 2}=0 \mathrm{~V}$ case, because 0.1 V on T2 is not enough to forward bias internal JBS diode of JBSFET-2.
- $\mathrm{V}_{\mathrm{th}} @ \mathrm{~V}_{\mathrm{T} 2-\mathrm{T} 1}=0.1 \mathrm{~V}, \mathrm{I}_{\mathrm{T} 2-\mathrm{T} 1}=10 \mathrm{~mA}$ was 1.73 V .

Acknowlegments:
> Prof. Baliga - SiC BiDFET device
> Prof. Hopkins - Advanced packaging of SiC BiDFET device
> Graduate Students:
> Device: Aditi Agarwal, Kijeong Han, Ajit Kanale
> Advanced Packaging: Tzu-Hsuan Cheng
> PV converter: Ramandeep Narwal
> Magnetics: Isaac Wong, Sagar Rastogi
> Post-Doc:
> PV Converter Applications: Suyash Shah
> Device Manufacturing:
> X-FAB Foundry: Voshadhi Amarsinghe, John Ransom

Sponsor: DOE SETO [Grant DEEE0008345]; NASA

