FREESTEMS CENTER

Microgrid Control/Coordination Co-Design (MicroC3)

Shweta Meena, PhD Student 04/02/2023

Project Team

Professors

Dr. Srdjan Lukic, Principal Investigator
 Dr. Iqbal Husain, Demo Lead
 Dr. Aranya Chakraborty, Controls Lead
 Dr. Wenuyan Tang, Optimization Lead

Students

- Shweta Meena, Research Assistant
 Hualong Liu, Research Assistant
 Rahul Roy, Research Assistant
 Satyaki Banik, Research Assistant
- ➢Ayman AlZawaideh, Research Assistant

Presentation Outline

NC STATE UNIVERSITY

- ➢Project Objectives
- ≻Approach
- ≻Co-design Overview
- ≻Case study
- ≻Future Work
- ≻References

Presentation Outline

NC STATE UNIVERSITY

➢Project Objectives

- >Approach
- ≻Co-design Overview
- ≻Case study
- ≻Future Work
- ≻References

SYSTEMS CENTER

Project Objectives

- Develop a toolsuite that systematically designs all aspects (plant & control) of a microgrid (MG), given a set of design objectives and performance constraints
- Tool predicts & achieves the desired MG performance & reliability metrics with significantly smaller and/or less capable & less expensive components.

Metric	State of the Art	Proposed
Stability/Damping	Oversized DER stabilizes system; no guarantee of stability	Right-sized components coordinate to achieve stability; guarantee of stability
Reliability/Conting ency planning	Achieved through redundancy/oversizi ng	Achieved through resource coordination and control
Plug & Play	Small generators/loads	Any generator/load

Presentation Outline

NC STATE UNIVERSITY

➢Project Objectives

- ≻Approach
- Co-design Overview
- ≻Case study
- ≻Future Work
- >References

- Design tool identifies low-cost, non-trivial MG design (plant & control)
- Validation tool verifies predicted performance and generates implementation, including code and configurations for control, communications and coordination
- Implementation is executed on MCP: ARPA-E funded open-source platform (RIAPS) extended with time sensitive networking capabilities [1]

MCP: Modular Control Platform; RIAPS: Resilient Information Architecture Platform for the Smart Grid

Presentation Outline

NC STATE UNIVERSITY

- ➢Project Objectives
- ≻Approach
- ≻Co-design Overview
- ≻Case study
- ≻Future Work
- References

FREEN Overview of Co-design Approach

CHANGING WHAT'S POSSIBLE

NC STATE

UNIVERSITY

FREEMicrogrid Plant Design Optimization NC STAT

- > Formulation type Mixed Integer Linear Programming (MILP) [2, 3]
- DER portfolio: Photovoltaics (PV), diesel generators (DG), and battery energy storage systems (BESS)
- Optimization period: One year, 864 datapoints; Weekday, Weekend, and Peak day for each month on an hourly basis
- Cost function: Microgrid investment cost, operation cost and carbon emission cost
- Constraints: Power flow constraints, DER physical constraints, design constraints and reliability constraints [4]
- > **Power Flow**: Lossless linearized distribution flow (LinDistFlow) [5]
- > Multiple Solutions: PoolSolutions, Gurobi [6]

Plant Design Space Exploration SYSTEMS CENTER

- > **DER Portfolio:** One Diesel (3 MW), One BESS (1.75 MW, 7 MWh)
- Maximum DER Installation at a given bus: 1
- > **DER power output at peak load:** Diesel (3 MW), BESS (0.29 MW)
- Grid power exchange limit : 1 MW
- System peak load = 4.29 MW

CHANGING WHAT'S POSSIBLE

Utility

Grid

DER Modeling

Simplified modeling of DERs with droop and LPF control loops

 $\textbf{BESS}\left(\textbf{GFM}\right)$

PV (GFL)

FREEN Overview of Co-design Approach

CHANGING WHAT'S POSSIBLE

NC STATE

UNIVERSITY

FREENTS CENTER

Nonlinear Model

- > Inputs: System Topology, Load location, Generation Mix and DER setpoints
- Nonlinear model outputs:
 - Steady state operating point parameters (frequency, currents and voltages in the dq reference frame)
 - Time domain waveform using differential algebraic equations [6]
- > Model currently handles: GFM and GFL with droop and LPF control loops and RL loads

SYSTEMS CENTER

Nonlinear Model

15

- Takes the operating point information from the non-linear model to find the steady state operating point
- Linearize the DAEs around the operating point and eliminate the algebraic part to get the small-signal model
- Model Currently Used for Inverter Parameter Tuning using exhaustive search (alternative H2 norm optimization)

Algorithm 1: Eigenvalue Analysis

1 Find the eigenvalues (λ) of the parameterized small-signal model $A(\rho)$ matrix 2 Find the real part of the eigenvalue closest to the imaginary axis $(\lambda^* = -min(|\mathbf{Re}(\lambda)|)$ 3 Run an exhaustive search for

 $\max_{\rho} |\lambda^*| \quad \forall \quad \rho \in [\rho_{min}, \rho_{max}]$

Algorithm 1: H_2 norm optimization 1 Assign $\rho^k \leftarrow \rho_o$ and choose $0 < \beta < 1$. 2 Apply a perturbation $\Delta \rho_i$ to the *i*th element of ρ^k . 3 Find the perturbation in G(s) due to $\Delta \rho_i$ $\Delta G^i_{\Delta \rho_i} = G^i_{\rho^k + \Delta \rho_i} - G^i_{\rho^k} = C^i_p (sI - A^i_p)^{-1} B^i_p$ 4 The total perturbation of all parameters is $\Delta G_{\Delta \rho} = \sum_{i=1}^{2s} (\Delta G^i_{\Delta \rho_i})$ 5 Find the final perturbed transfer function $G_{\rho^k + \Delta \rho} = G_{\rho^k} + \Delta G_{\Delta \rho} = \bar{C}_p (sI - \bar{A}_p)^{-1} \bar{B}_p$ 6 Solve the Lyapunov equation to get P $P\bar{A}_p + \bar{A}_p^T P + \bar{C}_p^T \bar{C}_p = 0$ 7 With $\bar{B}_p = [B_1 \quad B_2]$, find descent direction $[\partial J/\partial \rho] = 2B_2^T P B_1$. 8 Compute $\rho^{k+1} = \rho^k - \beta [\partial J/\partial \rho]$. 9 Assign $\rho^k \leftarrow \rho^{k+1}$ and goto Step 2.

Small Signal Model

NC STATE UNIVERSITY

Develop nonlinear dynamic model of the microgrid

$$\begin{cases} \dot{x} = f(x, y, u; \alpha_c) \\ 0 = g(x, y, u; \alpha_c) \end{cases}$$

where,

$$\begin{split} x &:= [x_{inv}, x_{net}] \\ y &:= [y_{inv}, y_{net}] \\ u &:= [i_{inj}] \\ \alpha_c &:= [\alpha_{inv}, \alpha_{net}] \end{split}$$

$$\begin{aligned} x_{inv} &:= [\delta, P, Q, i_{od}, i_{oq}]^T \in \mathbb{R}^5\\ y_{inv} &:= [V_{od}, V_{oq}, V_{bd}, V_{bq}]^T \in \mathbb{R}^4\\ \alpha_{inv} &:= [m, n, w_c, r_c, L_c]^T \in \mathbb{R}^5\\ x_{net} &:= [i_{lineDi}, i_{lineQi}, i_{loadDj}, i_{loadQj}]^T \in \mathbb{R}^{2(n-1)}\\ y_{net} &:= [V_{bDj}, V_{bQj}, V_{bDk}, V_{bQk}]^T \in \mathbb{R}^n\\ \alpha_{net} &:= [r_{linei}, L_{linei}, r_{loadj}, L_{loadj}]^T \in \mathbb{R}^{4(n-1)}\end{aligned}$$

Find the steady state operating points

$$\begin{cases} 0 = f(x^*, y^*, 0; \alpha_c) \\ 0 = g(x^*, y^*, 0; \alpha_c) \end{cases}$$

Linearize the DAEs around the operating point and eliminate the algebraic part to get the small-signal model

$$\Delta \dot{x} = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial u} \Delta u$$
$$0 = \frac{\partial g}{\partial x} \Delta x + \frac{\partial g}{\partial y} \Delta y + \frac{\partial g}{\partial u} \Delta u$$
$$\Box$$
$$\Delta \dot{x} = \left[\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} (\frac{\partial g}{\partial y})^{-1} \frac{\partial g}{\partial x}\right] \Delta x$$
$$+ \left[\frac{\partial f}{\partial u} - \frac{\partial f}{\partial y} (\frac{\partial g}{\partial y})^{-1} \frac{\partial g}{\partial u}\right] \Delta u$$
$$\Box$$
$$\Delta \dot{x} = A(\rho) \Delta x + B(\rho) \Delta u$$

Presentation Outline

NC STATE UNIVERSITY

- ➢Project Objectives
- ≻Approach
- ≻Co-design Overview
- ≻Case study
- ➢Future Work
- References

Case Study

A single feeder of Banshee Network that requires seamless islanding and has critical loads that are ROCOF sensitive.

Description	Constraint/Metric
	Power Flow
	DER Power and
Component/System	Capacity
Limits	ROCOF Constraint
	Voltage Limits
	Frequency Limits
Resiliency	Seamless Islanding
Stability	Damping, ROCOF

Small-signal and time-domain evaluations are unique to MicroC3.

Fig. Feeder 1 of Banshee Microgrid [7]

Plant Design Evaluation

NC STATE UNIVERSITY

Plant Optimization formulation like DER-CAM

- Seamless islanding with no load shedding
 - Design 1: Generation exceeds load
 - Design 2: IBR (BESS) generation exceeds load
- Seamless islanding with no critical load shedding
 - Design 3: Generation exceeds critical load
 - Design 4: IBR (BESS) generation exceeds critical load

1: Blackout	3: Seamless Islanding	
2: Seamless with load shedding		

FREE Dynamic Evaluation Without Controller Tuning

Design1:

GFM1: Droop: 1e⁻⁵, LPF= 20 Hz GFM2: Droop: 1e⁻⁶, LPF= 10 Hz

Resilience

Resilience

NC STATE

UNIVER

FRE THE Evaluation With Controller Tun INC STATE

Design1: GFM1: Droop: 1e⁻⁷, LPF= 10 Hz GFM2: Droop: 1e⁻⁷, LPF= 10 Hz

FREEPlant Design Improvement basedSYSTEMS CENTERon dynamic Evaluation

Successfully scaled down the size of the DERs while still meeting the resiliency metrics

1: Blackout3: Seamless Islanding2: Seamless with load shedding

NC STATE

UNIVERSI

Presentation Outline

NC STATE UNIVERSITY

- ➢Project Objectives
- ≻Approach
- ≻Co-design Overview
- ≻Case study
- ≻Future Work
- ≻References

- Use detailed models for GFM and GFL
- > Replace exhaustive search for controller tunning with H_2 norm
- > Automate the plant design improvement step
- > Modify plant optimization to include other DERs like wind turbine, flywheels, etc.

SYSTEMS CENTER

References

[1] H. Tu, Y. Du, H. Yu, A. Dubey, S. Lukic and G. Karsai, "Resilient Information Architecture Platform for the Smart Grid: A Novel Open-Source Platform for Microgrid Control," in IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9393-9404, Nov. 2020.

[2] S. Mashayekh, M. Stadler, G. Cardoso, and M. Heleno, "A mixed integer linear programming approach for optimal der portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, vol. 187, pp. 154–168, 2017

[3] B. Yan, P. B. Luh, G. Warner, and P. Zhang, "Operation and design optimization of microgrids with renewables," IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 573–585, 2017.

[4] M. Baran and F. Wu, "Optimal sizing of capacitors placed on a radial distribution system," IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735–743, 1989.

[5] Gurobi Optimization, LLC, "Gurobi Optimizer Reference Manual," 2023. [Online]. Available: https://www.gurobi.com

[6] The MathWorks Inc., "vpasolve (R2012b)," Natick, Massachusetts, United States, 2012. [Online]. Available: <u>https://www.mathworks.com</u>

[7] R. Salcedo, et al., "Banshee distribution network benchmark and prototyping platform for hardware-in-the-loop integration of microgrid and device controllers," The Journal of Engineering, vol. 2019, no. 8, pp. 5365–5373, 2019. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/joe.2018.5174

Thank You! Questions?

Toolchain Overview - Load grid model

SYSTEMS CENTER

FREE EXAMPLE .grid model and its SYSTEMS CENTER COrresponding one-line diagram

NC STATE

UNIVERSITY

Toolchain Overview <u>- Set data</u> path

SYSTEMS CENTER

NC STATE

UNIVERSITY

Toolchain Overview

SYSTEMS CENTER

Example metadata file

The metadata file contains:

data:

- data for reading bus load and solar • data files.
- Financial context parameters ٠
- A list of bus names, where installing ٠ DERs is permissible.
- designation of a slack bus. ٠
- Plant optimization constraints: ٠
- Control optimization parameters ٠

ata:	bus_names:
points_per_day: 24	- "BUS101"
typical_days_per_year: 36	- "BUS102"
num_points: 864	- "BUS103"
load:	- "BUS104"
<pre>path: "profilesAllNodesHourly.csv"</pre>	- "BUS105"
units: "kW"	- "BUS106"
headers: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]	- "BUS107"
header_names: [<pre>slack_bus: "BUS101"</pre>
"BUS101", "BUS102", "BUS103", "BUS104", "BUS105", "BUS106", "BUS107",	constraints:
"BUS201", "BUS202", "BUS203", "BUS204", "BUS205", "BUS206", "BUS207",	MAX_BUS_VOLTAGE_PU: 1.05
"BUS301", "BUS302", "BUS303", "BUS304", "BUS305", "BUS306", "BUS307"	MIN_BUS_VOLTAGE_PU: 0.90
]	BATT_INI_SOC: 0.8
date_collected: "2023-12-01"	CURTAIL_MAX: 0
weather:	MAX_DGS: 6
path: "weatherOneHour.csv"	MAX_PVS: 0
units: ["degC", "W/m2"]	MAX_BATTERIES: 6
date collected: "2023-12-01"	ALLOWED_DER_MODELS: ["PV_1000_KW", "BAITERY_7000_KWN"]
financial:	control:
nominal interest rate: 0.041	NOMINAL_OPERATING_FREQUENCY: 60.0
expected inflation rate: 0.01	BUS_RESISTANCE_OHMS: 100000
project lifetime years: 15	GRID_IMPEDANCE_RX_OHMS :
CURTATI MENT PENALTY PER KWH+ 0 18	- 0.000882
	- 0.001046942034994
	LOAD_OPERATING_VOLTAGE_V: 480

