FREEDIN SYSTEMS CENTER

Bidirectional Shared-Switch DC-DC Converter for Electric Vehicle Applications

> Michael Kercher, PhD Student FREEDM Symposium April 3, 2024

FREENS CENTER

- Energy from the main battery pack is consumed by:
 - Traction drive system
 - Accessory loads via low voltage subsystem, such as lighting, climate control, radio, etc.
- DC-DC converter connects high and low voltage systems with galvanic isolation
 - Typical size:
 - 2-3 kW (passenger)
 - 5-10 kW + (heavy duty)

Bidirectional Isolated DC-DC Low Voltage Battery Accessory Loads

FREEN: SYSTEMS CENTER

- Increase efficiency improves battery life, reduces cooling needs
- Increase density less mass, easier packaging
- Reduce cost improved value for manufacturer and consumer
- The proposed "Shared-Switch Converter" can achieve all 3
 - One set of switches performs functions for two converter stages
 - Lower parts count means lower size, cost, and losses

FREEN:

NC STATE UNIVERSITY

- Benefits:
 - Reduced parts count smaller, lighter, cheaper
 - Fewer switches to generate switching losses
 - More direct current path reduces conduction loss
- Challenges, gaps in prior art:
 - Gating generation to ensure proper operation of both converters under all conditions – unique to the specific topology
 - Modeling for shared-switch topologys, especially if converters operate in different modes (CCM vs. DCM, etc.)
 - Hardware design: component sizing, minimization of parasitic effects

FREENS CENTER

- NC STATE UNIVERSITY
- Numerous examples of integrated topologies in literature
- Boost + Series Resonant Converter:

- Allows resonant stage to operate in efficient DCX mode across varying input voltage from photovoltaic array
- Number of active switches reduced by 50% vs. two stage converter
- Minimum 96.8% efficiency across voltage range vs. 90% for series resonant only

B. York, W. Yu and J. -S. Lai, "An Integrated Boost Resonant Converter for Photovoltaic Applications," in *IEEE Transactions on Power Electronics*, vol. 28, no. 3, pp. 1199-1207, March 2013, doi: 10.1109/TPEL.2012.2207127.

FREEMS CENTER

NC STATE UNIVERSITY

- Examples from literature show:
 - Improved efficiency across varying operating conditions
 - Successful reduction of active switch and filter element requirements
 - Lower cost and higher power density vs. traditional topologies
- Research objectives:
 - Increased power capability for heavy vehicle applications
 - Broader range of voltage conversion ratios to account for changing battery state of charge
 - Ability to maintain high efficiency at conversion ratio extremes
 - Straightforward method for modelling and controller development
 - Simplified control without coupling of controlled variables or nonlinear behavior

FREENTS CENTER

NC STATE UNIVERSITY

- EV DC-DC converter requirements:
 - Bidirectional power: LV battery bank can support HV bus under transients
 - Galvanically isolated
 - Wide voltage conversion ratio range 3:1 ($\frac{HV_{max}}{LV_{min}}$: $\frac{HV_{min}}{LV_{max}}$) due to changing battery state of charge
- Series-connected DAB and Interleaved Buck
 - DAB offers isolation, bidirectional power control
 - Interleaved buck adapts to changing voltage conversion ratio, allowing DAB to maintain ideal ratio for DCX operation¹

(1) $V_{Cint} = \frac{1}{2} V_{HV} \frac{N_2}{N_1}$

Proposed Topology

DCX operation of DAB minimizes RMS winding currents, losses

Primary Current for equal power throughput and input voltage: Sec. voltage matched $V_{Cint} = V_{HV} \frac{N_2}{N_1}$

SYSTEMS CENTER

Sec. voltage mismatch $V_{Cint} \neq V_{HV} \frac{N_2}{N_4}$

 Applying integration concept reduces switch count 40%, reduces switching and conduction losses

NC STATE

Efficiency Comparison

ЛA

SYSTEMS CENTER

Integrated DAB + Buck

Efficiency Comparison

Loss Breakdown for 600V - 28V, 3.75 kW Operation

SYSTEMS CENTER

NC STATE

UNIVERSITY

Conventional DAB Modulator

- Conventional DAB modulation: fixed 50% duty, variable phase
 - Single, Double, or Triple Phase Shift used to control power flow

SYSTEMS CENTER

- HV bridge to LV bridge phase, phase between each full bridge leg

NC STATE

FREENTS CENTER

NC STATE

- Fundamental differences for proposed topology vs. traditional DAB:
 - LV Duty ≠ 50% variable according to buck converter requirements not DAB
 - HV half bridge cannot enforce $V_{pri} = 0$ when $I_{pri} \neq 0$
- DAB and Buck interaction causes control difficulty

FREEMS CENTER

Modulator Solution

 Phase shift between LV legs provides magnetizing current reset once per period for any duty

FREEN:

Decoupled Control

• DAB output is proportional to new control input "Vm"

FREEN: SYSTEMS CENTER

NC STATE UNIVERSITY

- DAB output current is fully decoupled from LV Duty
- DAB output current is directly proportional to control input Vm

- NC STATE
- Integrated converter analysis can be difficult due to interaction between stages at the shared components
- Virtual Converter Modeling (VCM) splits an integrated converter in to separate "virtual converters" which can be analyzed by traditional methods

equivalent circuit

FREEMS CENTER

- NC STATE UNIVERSITY
- Bidirectional Shared-Switch DC-DC Converter is modelled as separate DAB and Interleaved Buck
 - Additional constraint: LV bridge gates are driven in unison

SYSTEMS CENTER

Model Derivation

- Large signal model is combination of standard DAB and buck models
 - DAB model derived by integrating transformer current (1)
 - Different operating modes (DCM vs. CCM) not an issue

Large signal model and corresponding state space equations

 Small signal model can be derived from large signal state space equations

$$\begin{bmatrix} \vec{V}_{Cint} \\ \vec{V}_{Cint} \\ \vec{i}_{out} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial V_{Cint}} \frac{I_{DAB}}{C_{int}} & -\frac{d}{C_{int}} \\ \frac{2d}{L_{buck}} & 0 \end{bmatrix} \begin{bmatrix} \tilde{V}_{Cint} \\ \vec{i}_{out} \end{bmatrix} \\ + \begin{bmatrix} \frac{\partial}{\partial \phi} \frac{I_{DAB}}{C_{int}} & \frac{\partial}{\partial d} \frac{I_{DAB}}{C_{int}} - \frac{i_{out}}{C_{int}} \\ 0 & \frac{2V_{LV}}{L_{buck}} \end{bmatrix} \begin{bmatrix} \tilde{\phi} \\ \tilde{d} \end{bmatrix}$$

FREENS CENTER

Hardware Design

- 600V to 28V DC-DC for military vehicles
- 4x parallel converters per module, 15kW total

ALC: NOT	. 11:			HV Swite
· · · · ·				LV Switc
CH				
APBDC-EQ Aegis Po 10/16/23			: u	
CY2				
3		j j		Solution of the second se
5-				
FG 225 3 CX00				
M	APBDC-E02 REV A02	CY2		CY6

Parameter	Value		
Rated Power	3750 W		
V _{HV}	565 – 635 V		
V _{LV}	20 – 32 V		
Switching Freq.	200 kHz		
N ₁ :N ₂	11:2		
HV Switches	SiC, 1200 V, 31 A		
LV Switches	GaN, 100 V, 101 A (2p top, 4p bottom)		

FREENTS CENTER

Summary

- Shared-Switch converter topologies offer the benefits of a multi-stage converter with a reduced switch count
 - Lowered size, cost, and losses vs. independent stages
- A series connected DAB and Buck converter is well suited for heavy-duty electric vehicle applications
 - DAB provides isolation and bidirectional power control
 - Buck ensures DAB operates at maximum efficiency for all conditions
 - Proposed shared-switch configuration reduces switch count by 40%
- An innovative modulation method ensures linear power control and decoupling between stages
- Virtual Converter Modeling alleviates the difficulty of analyzing a shared-switch converter as a single circuit by superimposing simpler converter models

Thank you!