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* Energy from the main battery pack is consumed by:
— Traction drive system

— Accessory loads via low voltage subsystem, such as lighting, climate
control, radio, etc.

« DC-DC converter connects high and low voltage systems with
galvanic isolation

— Typical size: — - .
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* Increase efficiency - improves battery life, reduces cooling needs
* Increase density - less mass, easier packaging
» Reduce cost - improved value for manufacturer and consumer

* The proposed “Shared-Switch Converter” can achieve all 3
— One set of switches performs functions for two converter stages
— Lower parts count means lower size, cost, and losses
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« Benefits:
— Reduced parts count — smaller, lighter, cheaper
— Fewer switches to generate switching losses
— More direct current path reduces conduction loss
« Challenges, gaps in prior art:

— Gating generation to ensure proper operation of both converters under all
conditions — unique to the specific topology

— Modeling for shared-switch topologys, especially if converters operate in
different modes (CCM vs. DCM, etc.)

— Hardware design: component sizing, minimization of parasitic effects
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 Numerous examples of integrated topologies in literature
 Boost + Series Resonant Converter:
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 Allows resonant stage to operate in efficient DCX mode across
varying input voltage from photovoltaic array

* Number of active switches reduced by 50% vs. two stage
converter

* Minimum 96.8% efficiency across voltage range vs. 90% for
series resonant only

B. York, W. Yu and J. -S. Lai, "An Integrated Boost Resonant Converter for Photovoltaic Applications," in IEEE Transactions on Power 5
Electronics, vol. 28, no. 3, pp. 1199-1207, March 2013, doi: 10.1109/TPEL.2012.2207127.
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« Examples from literature show:
— Improved efficiency across varying operating conditions
— Successful reduction of active switch and filter element requirements
— Lower cost and higher power density vs. traditional topologies

* Research objectives:
— Increased power capability for heavy vehicle applications

— Broader range of voltage conversion ratios to account for changing
battery state of charge

— Ability to maintain high efficiency at conversion ratio extremes
— Straightforward method for modelling and controller development

— Simplified control without coupling of controlled variables or nonlinear
behavior
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« EV DC-DC converter requirements:
— Bidirectional power: LV battery bank can support HV bus under transients
— Galvanically isolated
— Wide voltage conversion ratio range 3:1 (
battery state of charge

- Series-connected DAB and Interleaved Buck

— DAB offers isolation, bidirectional power control

— Interleaved buck adapts to changing voltage conversion ratio, allowing DAB
to maintain ideal ratio for DCX operation’

HVmax |

Vmin) due to changing

LVmin LVmax

—

cule Gau | 63U~ Gay
= = e Vool [ty % | 1 Ak:
w\?”g i } : (D) Veime = 2 Viv gy,
| 1
Ni N2 G310 ca lead, cat L, v
JEG‘ | :J | i
—e % O 7




FREEZ W, NC STATE

Proposed Topology UNIVERSITY

SYSTEMS CENTER

« DCX operation of DAB minimizes RMS winding currents, losses

Primary Current for equal power
throughput and input voltage:

Sec. voltage matched Vi, = Vyy zz

Sec. voltage mismatch Vi, # VHVN—2
1

* Applying integration concept reduces switch count 40%, reduces
SW|tch|ng and conduction losses
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DAB DAB + Buck
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80 JIntegrated DAB + Buck
20 (Proposed)

=Series DAB + Buck
o0 =DAB
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« Conventional DAB modulation: fixed 50% duty, variable phase
— Single, Double, or Triple Phase Shift used to control power flow
— HV bridge to LV bridge phase, phase between each full bridge leg
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« Fundamental differences for proposed topology vs. traditional DAB:

— LV Duty # 50% - variable according to buck converter requirements — not
DAB

— HV half bridge cannot enforce Vpri = 0 when Ipri 70

 DAB and Buck interaction causes control difficulty
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« DAB output is proportional to new control input “Vm”
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* DAB output current is fully decoupled from LV Duty
* DAB output current is directly proportional to control input Vm
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* |Integrated converter analysis can be difficult due to interaction
between stages at the shared components

* Virtual Converter Modeling (VCM) splits an integrated converter
In to separate “virtual converters” which can be analyzed by
traditional methods

O -

|

|
, |
| |
| ' — :
: vue C i O “es
|
|
| J |
| e, & I O -
|y S 2
Integrated Converter Switches duplicated, Virtual Converter

gates connected equivalent circuit

16



FREEEW Application of VCM NG STATE

UNIVERSITY

SYSTEMS CENTER

e Bidirectional Shared-Switch DC-DC Converter is modelled as
separate DAB and Interleaved Buck

— Additional constraint: LV bridge gates are driven in unison
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» Large signal model is combination
of standard DAB and buck models

— DAB model derived by integrating transformer

current (1)

— Different operating modes (DCM vs. CCM) not an

issue
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Large signal model and corresponding state
space equations

« Small signal model can be derived
from large signal state space
equations
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* 600V to 28V DC-DC for military vehicles T Py

* 4x parallel converters per module, 15kW total Vv, 565 — 635 V
V,, 20-32V
Switching Freq. 200 kHz
NN, 11:2

HV Switches SiC, 1200 V, 31 A

LV Switches GaN, 100V, 101 A
(2p top, 4p bottom)
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« Shared-Switch converter topologies offer the benefits of a
multi-stage converter with a reduced switch count
» Lowered size, cost, and losses vs. independent stages

» A series connected DAB and Buck converter is well suited for
heavy-duty electric vehicle applications
* DAB provides isolation and bidirectional power control
* Buck ensures DAB operates at maximum efficiency for all conditions
* Proposed shared-switch configuration reduces switch count by 40%

* An innovative modulation method ensures linear power control and
decoupling between stages

* Virtual Converter Modeling alleviates the difficulty of analyzing a
shared-switch converter as a single circuit by superimposing
simpler converter models 20



FREEZ W, NC STATE

SYSTEMS CENTER UNIVERSITY

Thank you!
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